Above‐Bandgap Photovoltages in Antiferroelectrics

The first antiferroelectric solar cell is presented. This study shows that antiferroelectric thin-film photovoltaic current can be switched on when biased into the polar phase to generate abovebandgap photovoltages in excess of 100 V and photovoltaic fields of several megavolts per centimeter, the largest ever measured for any material.

[1]  B. Sturman,et al.  REVIEWS OF TOPICAL PROBLEMS: The photogalvanic effect in media lacking a center of symmetry , 1980 .

[2]  C. E. Land Photoferroelectric image storage in antiferroelectric-phase PLZT ceramics , 1979, IEEE Transactions on Electron Devices.

[3]  B. Goldstein,et al.  High‐Voltage Photovoltaic Effect , 1959 .

[4]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[5]  E. Sawaguchi,et al.  Antiferroelectric Structure of Lead Zirconate , 1951 .

[6]  Wolfgang Ruppel,et al.  Bulk photovoltaic effect in BaTiO3 , 1975 .

[7]  A. L. Tolstikhina,et al.  Giant bulk photovoltaic effect in thin ferroelectricBaTiO3films , 2014 .

[8]  Jiwei Zhai,et al.  A comprehensive review on the progress of lead zirconate-based antiferroelectric materials , 2014 .

[9]  T. Egami,et al.  Atomic Structure of PbZrO3 Determined by Pulsed Neutron Diffraction , 1998 .

[10]  R. Baltz,et al.  The origin of the photo-emf in ferroelectric and non-ferroelectric materials , 1982 .

[11]  K. Yao,et al.  Large photo-induced voltage in a ferroelectric thin film with in-plane polarization , 2005 .

[12]  J. Íñiguez,et al.  First-principles study of the multimode antiferroelectric transition in PbZrO 3 , 2014, 1407.8405.

[13]  P. S. Brody High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconate ceramics , 1975 .

[14]  J. Dec,et al.  Structure and disorder in single‐crystal lead zirconate, PbZrO3 , 1993 .

[15]  Marin Alexe,et al.  Role of domain walls in the abnormal photovoltaic effect in BiFeO3 , 2013, Nature Communications.

[16]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[17]  P. G. Snyder,et al.  Dielectric functions and electronic band structure of lead zirconate titanate thin films , 2005 .

[18]  E. Sawaguchi,et al.  Dielectric Properties of Lead Zirconate , 1951 .

[19]  Zhaohua Jiang,et al.  Effect of Eu Doping on the Electrical Properties and Energy Storage Performance of PbZrO3 Antiferroelectric Thin Films , 2011 .

[20]  Feiling Wang,et al.  Photoactivated birefringence in antiferroelectric thin films via a structural transition , 1994 .

[21]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[22]  H. Fujishita,et al.  Crystal Structure and Order Parameters in the Phase Transition of Antiferroelectric PbZrO3 , 2003 .

[23]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[24]  L. Sosnowski,et al.  Photovoltaic Effects Exhibited in High-resistance Semi-conducting Films , 1946, Nature.

[25]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[26]  F. Micheron Dependence of the photovoltaic effect upon polarization in oxygen octaedra ferroelectrics , 1978 .

[27]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.