The Renormalization Group flow of unimodular f(R) gravity
暂无分享,去创建一个
[1] Frank Saueressig,et al. On the Renormalization Group Flow of Gravity , 2007, 0712.0445.
[2] Frank Saueressig,et al. Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.
[3] G. Hooft,et al. One loop divergencies in the theory of gravitation , 1974 .
[4] Donoghue,et al. Leading quantum correction to the Newtonian potential. , 1993, Physical review letters.
[5] C. Cookson. The Asymptotic Safety Scenario In Quantum Gravity , 2015 .
[6] Frank Saueressig,et al. Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.
[7] Christoph Rahmede,et al. A bootstrap towards asymptotic safety , 2013 .
[8] Frank Saueressig,et al. Quantum Einstein gravity , 2012, 1202.2274.
[9] D. Litim,et al. Completeness and consistency of renormalisation group flows , 2002, hep-th/0202188.
[10] L. Smolin. Quantization of unimodular gravity and the cosmological constant problems , 2009, 0904.4841.
[11] Francesco Caravelli,et al. The local potential approximation in quantum gravity , 2012, 1204.3541.
[12] Astrid Eichhorn,et al. Light fermions in quantum gravity , 2011, 1104.5366.
[13] Frank Saueressig,et al. ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.
[14] Abhay Ashtekar,et al. From General Relativity to Quantum Gravity , 2014, 1408.4336.
[15] Martin Reuter,et al. Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.
[16] I. D. Saltas,et al. UV structure of quantum unimodular gravity , 2014, 1410.6163.
[17] M. Niedermaier,et al. The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.
[18] M. Rubin,et al. Symmetric‐tensor eigenspectrum of the Laplacian on n‐spheres , 1985 .
[19] Juergen A. Dietz,et al. Asymptotic safety in the f(R) approximation , 2012, 1211.0955.
[20] J. Jurkiewicz,et al. Renormalization group flow in CDT , 2014, 1405.4585.
[21] Daniel F. Litim,et al. Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[22] Christoph Rahmede,et al. Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.
[23] Christoph Rahmede,et al. ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.
[24] Roberto Percacci,et al. Search of scaling solutions in scalar–tensor gravity , 2015, 1501.00888.
[25] Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.
[26] D. Litim. Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.
[27] J. Lopez-Villarejo,et al. Ultraviolet behavior of transverse gravity , 2008, 0807.1293.
[28] S. Nagy,et al. Lectures on renormalization and asymptotic safety , 2012, 1211.4151.
[29] A. Einstein. Do gravitational fields play an essential part in the structure of the elementary particles of matter , 1952 .
[30] Andreas Nink,et al. Field parametrization dependence in asymptotically safe quantum gravity , 2014, 1410.7816.
[31] Holger Gies. Running coupling in Yang-Mills theory: A flow equation study , 2002 .
[32] Christoph Rahmede,et al. Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.
[33] M. Reuter,et al. Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .
[34] Steven Weinberg,et al. The Cosmological Constant Problem , 1989 .
[35] M. Reuter,et al. Asymptotic Safety, Fractals, and Cosmology , 2012, 1205.5431.
[36] D. Litim. Fixed points of quantum gravity , 2003, hep-th/0312114.
[37] Roberto Percacci,et al. Functional renormalization with fermions and tetrads , 2012, 1209.3649.
[38] G. Ellis. The trace-free Einstein equations and inflation , 2013, 1306.3021.
[39] A. Eichhorn. Faddeev-Popov ghosts in quantum gravity beyond perturbation theory , 2013, 1301.0632.
[40] E. Álvarez. Can one tell Einstein's unimodular theory from Einstein's general relativity? , 2005, hep-th/0501146.
[41] M. H. Goroff,et al. Quantum gravity at two loops , 1985 .
[42] Astrid Eichhorn,et al. Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario , 2012, 1204.0965.
[43] A. Codello,et al. Scaling and Renormalization in two dimensional Quantum Gravity , 2014, 1412.6837.
[44] F. Saueressig,et al. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .
[45] L. Garay,et al. Unimodular gravity and general relativity from graviton self-interactions , 2014, 1401.2941.
[46] R. Percacci. A Short introduction to asymptotic safety , 2011, 1110.6389.
[47] Frank Saueressig,et al. RG flows of Quantum Einstein Gravity in the linear-geometric approximation , 2014, 1412.7207.
[48] Martin Reuter,et al. Nonperturbative evolution equation for quantum gravity , 1998 .
[49] K. Aoki. INTRODUCTION TO THE NON-PERTURBATIVE RENORMALIZATION GROUP AND ITS RECENT APPLICATIONS , 2000 .
[50] Unruh,et al. Unimodular theory of canonical quantum gravity. , 1989, Physical review. D, Particles and fields.
[51] Roberto Percacci,et al. The running gravitational couplings , 1998 .
[52] A. V. D. Ven. Two-loop quantum gravity , 1992 .
[53] D. Litim. Optimized renormalization group flows , 2001, hep-th/0103195.
[54] J. Bij,et al. The exchange of massless spin-two particles , 1982 .
[55] B. Fiol,et al. Semiclassical unimodular gravity , 2008, 0809.1371.
[56] R. Percacci,et al. Consistency of matter models with asymptotically safe quantum gravity , 2014, 1410.4411.
[57] Carlo Pagani,et al. Consistent closure of renormalization group flow equations in quantum gravity , 2013, 1304.4777.
[58] E. Álvarez,et al. No Conformal Anomaly in Unimodular Gravity. , 2013, 1301.5130.
[59] S. Tsujikawa,et al. f(R) Theories , 2010, Living reviews in relativity.
[60] Frank Saueressig,et al. The universal RG machine , 2010, 1012.3081.
[61] L. F. Abbott,et al. The Background Field Method Beyond One Loop , 1981 .
[62] A. Eichhorn. On unimodular quantum gravity , 2013, 1301.0879.
[63] C. Wetterich,et al. Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .
[64] Frank Saueressig,et al. Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.
[65] Frank Saueressig,et al. A functional renormalization group equation for foliated spacetimes , 2012, 1212.5114.
[66] M. Shaposhnikov,et al. Scale invariance, unimodular gravity and dark energy , 2008, 0809.3395.
[67] Jan M. Pawlowski,et al. The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows , 2012, 1203.4207.
[68] Donoghue,et al. General relativity as an effective field theory: The leading quantum corrections. , 1994, Physical review. D, Particles and fields.
[69] J. Henson,et al. Approaches to Quantum Gravity: The causal set approach to Quantum Gravity , 2006, gr-qc/0601121.
[70] R. Percacci,et al. Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.
[71] Petros Wallden,et al. Causal sets: Quantum gravity from a fundamentally discrete spacetime , 2010 .
[72] Mikhail Shaposhnikov,et al. Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.
[73] Roberto Percacci,et al. Fixed points of higher-derivative gravity. , 2006, Physical review letters.
[74] Transverse Fierz–Pauli symmetry , 2006, hep-th/0606019.
[75] A. Wipf,et al. Flow equation for supersymmetric quantum mechanics , 2008, 0809.4396.
[76] TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.
[77] Juergen A. Dietz,et al. The local potential approximation in the background field formalism , 2013, Journal of High Energy Physics.
[78] D. Finkelstein,et al. Unimodular relativity and cosmological constant , 2000, gr-qc/0009099.
[79] J. Donoghue. The effective field theory treatment of quantum gravity , 2012, 1209.3511.
[80] Holger Gies. Introduction to the Functional RG and Applications to Gauge Theories , 2006 .
[81] Y. Ng,et al. Unimodular theory of gravity and the cosmological constant , 1991 .
[82] Unimodular cosmology and the weight of energy , 2007, hep-th/0702184.
[83] H. Gies,et al. Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.
[84] Quantum gravitational corrections to the nonrelativistic scattering potential of two masses , 2003 .
[85] Andreas Nink,et al. On the physical mechanism underlying asymptotic safety , 2012, 1208.0031.
[86] Jan M. Pawlowski,et al. Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.
[87] Daniel Becker,et al. En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions , 2014, 1404.4537.
[88] M. Henneaux,et al. The cosmological constant and general covariance , 1989 .
[89] Tim R. Morris. The Exact renormalization group and approximate solutions , 1994 .
[90] Jan M. Pawlowski. Aspects of the functional renormalisation group , 2007 .
[91] M. Reuter,et al. Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .
[92] Chuang Liu,et al. Scaling and Renormalization , 2002 .
[93] L. Smolin. Unimodular loop quantum gravity and the problems of time , 2010, 1008.1759.
[94] J. Braun. Fermion interactions and universal behavior in strongly interacting theories , 2011, 1108.4449.
[95] C. Wetterich,et al. Exact evolution equation for the effective potential , 1993, 1710.05815.
[96] Astrid Eichhorn,et al. Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.