The Renormalization Group flow of unimodular f(R) gravity

A bstractUnimodular gravity is classically equivalent to General Relativity. This equivalence extends to actions which are functions of the curvature scalar. At the quantum level, the dynamics could differ. Most importantly, the cosmological constant is not a coupling in the unimodular action, providing a new vantage point from which to address the cosmological constant fine-tuning problem. Here, a quantum theory based on the asymptotic safety scenario is studied, and evidence for an interacting fixed point in unimodular f (R) gravity is found. We study the fixed point and its properties, and also discuss the compatibility of unimodular asymptotic safety with dynamical matter, finding evidence for its compatibility with the matter degrees of freedom of the Standard Model.

[1]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[2]  Frank Saueressig,et al.  Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.

[3]  G. Hooft,et al.  One loop divergencies in the theory of gravitation , 1974 .

[4]  Donoghue,et al.  Leading quantum correction to the Newtonian potential. , 1993, Physical review letters.

[5]  C. Cookson The Asymptotic Safety Scenario In Quantum Gravity , 2015 .

[6]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[7]  Christoph Rahmede,et al.  A bootstrap towards asymptotic safety , 2013 .

[8]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[9]  D. Litim,et al.  Completeness and consistency of renormalisation group flows , 2002, hep-th/0202188.

[10]  L. Smolin Quantization of unimodular gravity and the cosmological constant problems , 2009, 0904.4841.

[11]  Francesco Caravelli,et al.  The local potential approximation in quantum gravity , 2012, 1204.3541.

[12]  Astrid Eichhorn,et al.  Light fermions in quantum gravity , 2011, 1104.5366.

[13]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[14]  Abhay Ashtekar,et al.  From General Relativity to Quantum Gravity , 2014, 1408.4336.

[15]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.

[16]  I. D. Saltas,et al.  UV structure of quantum unimodular gravity , 2014, 1410.6163.

[17]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[18]  M. Rubin,et al.  Symmetric‐tensor eigenspectrum of the Laplacian on n‐spheres , 1985 .

[19]  Juergen A. Dietz,et al.  Asymptotic safety in the f(R) approximation , 2012, 1211.0955.

[20]  J. Jurkiewicz,et al.  Renormalization group flow in CDT , 2014, 1405.4585.

[21]  Daniel F. Litim,et al.  Renormalization group and the Planck scale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[23]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[24]  Roberto Percacci,et al.  Search of scaling solutions in scalar–tensor gravity , 2015, 1501.00888.

[25]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[26]  D. Litim Fixed points of quantum gravity and the renormalisation group , 2008, 0810.3675.

[27]  J. Lopez-Villarejo,et al.  Ultraviolet behavior of transverse gravity , 2008, 0807.1293.

[28]  S. Nagy,et al.  Lectures on renormalization and asymptotic safety , 2012, 1211.4151.

[29]  A. Einstein Do gravitational fields play an essential part in the structure of the elementary particles of matter , 1952 .

[30]  Andreas Nink,et al.  Field parametrization dependence in asymptotically safe quantum gravity , 2014, 1410.7816.

[31]  Holger Gies Running coupling in Yang-Mills theory: A flow equation study , 2002 .

[32]  Christoph Rahmede,et al.  Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.

[33]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[34]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[35]  M. Reuter,et al.  Asymptotic Safety, Fractals, and Cosmology , 2012, 1205.5431.

[36]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[37]  Roberto Percacci,et al.  Functional renormalization with fermions and tetrads , 2012, 1209.3649.

[38]  G. Ellis The trace-free Einstein equations and inflation , 2013, 1306.3021.

[39]  A. Eichhorn Faddeev-Popov ghosts in quantum gravity beyond perturbation theory , 2013, 1301.0632.

[40]  E. Álvarez Can one tell Einstein's unimodular theory from Einstein's general relativity? , 2005, hep-th/0501146.

[41]  M. H. Goroff,et al.  Quantum gravity at two loops , 1985 .

[42]  Astrid Eichhorn,et al.  Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario , 2012, 1204.0965.

[43]  A. Codello,et al.  Scaling and Renormalization in two dimensional Quantum Gravity , 2014, 1412.6837.

[44]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[45]  L. Garay,et al.  Unimodular gravity and general relativity from graviton self-interactions , 2014, 1401.2941.

[46]  R. Percacci A Short introduction to asymptotic safety , 2011, 1110.6389.

[47]  Frank Saueressig,et al.  RG flows of Quantum Einstein Gravity in the linear-geometric approximation , 2014, 1412.7207.

[48]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[49]  K. Aoki INTRODUCTION TO THE NON-PERTURBATIVE RENORMALIZATION GROUP AND ITS RECENT APPLICATIONS , 2000 .

[50]  Unruh,et al.  Unimodular theory of canonical quantum gravity. , 1989, Physical review. D, Particles and fields.

[51]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[52]  A. V. D. Ven Two-loop quantum gravity , 1992 .

[53]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[54]  J. Bij,et al.  The exchange of massless spin-two particles , 1982 .

[55]  B. Fiol,et al.  Semiclassical unimodular gravity , 2008, 0809.1371.

[56]  R. Percacci,et al.  Consistency of matter models with asymptotically safe quantum gravity , 2014, 1410.4411.

[57]  Carlo Pagani,et al.  Consistent closure of renormalization group flow equations in quantum gravity , 2013, 1304.4777.

[58]  E. Álvarez,et al.  No Conformal Anomaly in Unimodular Gravity. , 2013, 1301.5130.

[59]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[60]  Frank Saueressig,et al.  The universal RG machine , 2010, 1012.3081.

[61]  L. F. Abbott,et al.  The Background Field Method Beyond One Loop , 1981 .

[62]  A. Eichhorn On unimodular quantum gravity , 2013, 1301.0879.

[63]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[64]  Frank Saueressig,et al.  Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.

[65]  Frank Saueressig,et al.  A functional renormalization group equation for foliated spacetimes , 2012, 1212.5114.

[66]  M. Shaposhnikov,et al.  Scale invariance, unimodular gravity and dark energy , 2008, 0809.3395.

[67]  Jan M. Pawlowski,et al.  The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows , 2012, 1203.4207.

[68]  Donoghue,et al.  General relativity as an effective field theory: The leading quantum corrections. , 1994, Physical review. D, Particles and fields.

[69]  J. Henson,et al.  Approaches to Quantum Gravity: The causal set approach to Quantum Gravity , 2006, gr-qc/0601121.

[70]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[71]  Petros Wallden,et al.  Causal sets: Quantum gravity from a fundamentally discrete spacetime , 2010 .

[72]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[73]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[74]  Transverse Fierz–Pauli symmetry , 2006, hep-th/0606019.

[75]  A. Wipf,et al.  Flow equation for supersymmetric quantum mechanics , 2008, 0809.4396.

[76]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[77]  Juergen A. Dietz,et al.  The local potential approximation in the background field formalism , 2013, Journal of High Energy Physics.

[78]  D. Finkelstein,et al.  Unimodular relativity and cosmological constant , 2000, gr-qc/0009099.

[79]  J. Donoghue The effective field theory treatment of quantum gravity , 2012, 1209.3511.

[80]  Holger Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006 .

[81]  Y. Ng,et al.  Unimodular theory of gravity and the cosmological constant , 1991 .

[82]  Unimodular cosmology and the weight of energy , 2007, hep-th/0702184.

[83]  H. Gies,et al.  Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.

[84]  Quantum gravitational corrections to the nonrelativistic scattering potential of two masses , 2003 .

[85]  Andreas Nink,et al.  On the physical mechanism underlying asymptotic safety , 2012, 1208.0031.

[86]  Jan M. Pawlowski,et al.  Fixed points and infrared completion of quantum gravity , 2012, 1209.4038.

[87]  Daniel Becker,et al.  En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions , 2014, 1404.4537.

[88]  M. Henneaux,et al.  The cosmological constant and general covariance , 1989 .

[89]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[90]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[91]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[92]  Chuang Liu,et al.  Scaling and Renormalization , 2002 .

[93]  L. Smolin Unimodular loop quantum gravity and the problems of time , 2010, 1008.1759.

[94]  J. Braun Fermion interactions and universal behavior in strongly interacting theories , 2011, 1108.4449.

[95]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[96]  Astrid Eichhorn,et al.  Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.