Robust adaptive parameter estimation of sinusoidal signals

A novel two step adaptive identification framework is proposed for sinusoidal signals to estimate the unknown offset, amplitude, frequency and phase, where only the output measurements are used. After representing the sinusoidal signal as a linearly parameterized form, several adaptive laws are developed. The proposed adaptive laws are driven by parameter estimation error information that is derived by applying filter operations on the output measurements, so that globally exponential convergence of the parameter estimation is proved. By using the sliding mode technique, we further improve the design of adaptations to achieve finite-time (FT) parameter estimation. The proposed approaches are independent of any observer/predictor design and robust to bounded measurement noises. The developed estimation methods are finally extended to the full parameter estimation of multi-sinusoids with only output measurements. Comparative simulation results are provided to illustrate the efficacy of the proposed methods.

[1]  Johan Schoukens,et al.  Least-squares periodic signal modeling using orbits of nonlinear ODEs and fully automated spectral analysis , 2005, Autom..

[2]  X. Ren,et al.  Robust adaptive finite-time parameter estimation for linearly parameterized nonlinear systems , 2013, Proceedings of the 32nd Chinese Control Conference.

[3]  Jian Li,et al.  Amplitude estimation of sinusoidal signals: survey, new results, and an application , 2000, IEEE Trans. Signal Process..

[4]  Yuanqing Xia,et al.  Adaptive parameter identification of linear SISO systems with unknown time-delay , 2014, Syst. Control. Lett..

[5]  Sergio M. Savaresi,et al.  On the parametrization and design of an extended Kalman filter frequency tracker , 2000, IEEE Trans. Autom. Control..

[6]  Alexander G. Loukianov,et al.  A globally convergent estimator for n-frequencies , 2002, IEEE Trans. Autom. Control..

[7]  Heinrich Meyr,et al.  Digital communication receivers - synchronization, channel estimation, and signal processing , 1997, Wiley series in telecommunications and signal processing.

[8]  Phillip A. Regalia,et al.  An improved lattice-based adaptive IIR notch filter , 1991, IEEE Trans. Signal Process..

[9]  Ming Hou,et al.  Estimation of Sinusoidal Frequencies and Amplitudes Using Adaptive Identifier and Observer , 2007, IEEE Transactions on Automatic Control.

[10]  Jayme Garcia Arnal Barbedo,et al.  Estimating Frequency, Amplitude and Phase of Two Sinusoids with Very Close Frequencies , 2009 .

[11]  Riccardo Marino,et al.  Global estimation of n unknown frequencies , 2002, IEEE Trans. Autom. Control..

[12]  P. Olver Nonlinear Systems , 2013 .

[13]  J. Hedrick,et al.  Control of multivariable non-linear systems by the sliding mode method , 1987 .

[14]  Xinghuo Yu,et al.  Continuous finite-time control for robotic manipulators with terminal sliding modes , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[15]  Ming Hou,et al.  Amplitude and frequency estimator of a sinusoid , 2005, IEEE Transactions on Automatic Control.

[16]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  P. Petrović Frequency and parameter estimation of multi-sinusoidal signal , 2012 .

[18]  S. Bhat,et al.  Continuous finite-time stabilization of the translational and rotational double integrators , 1998, IEEE Trans. Autom. Control..

[19]  Zhihong Man,et al.  Continuous finite-time control for robotic manipulators with terminal sliding mode , 2003, Autom..

[20]  Romeo Ortega,et al.  A globally convergent frequency estimator , 1999, IEEE Trans. Autom. Control..

[21]  Guido Herrmann,et al.  Robust adaptive finite-time parameter estimation and control of nonlinear systems , 2011, 2011 IEEE International Symposium on Intelligent Control.

[22]  Ming Hou,et al.  Parameter Identification of Sinusoids , 2012, IEEE Transactions on Automatic Control.

[23]  Torsten Söderström,et al.  Periodic signal analysis by maximum likelihood modeling of orbits of nonlinear ODEs , 2005, Autom..

[24]  Robert Grino,et al.  Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances , 2005, Autom..

[25]  X. Xia,et al.  Global frequency estimation using adaptive identifiers , 2002, IEEE Trans. Autom. Control..

[26]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[27]  Artem Kremlev,et al.  Identification of Frequency of Biased Harmonic Signal , 2007, Eur. J. Control.

[28]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .