Wavelet encoding of BRDFs for real-time rendering

Acquired data often provides the best knowledge of a material's bidirectional reflectance distribution function (BRDF). Its integration into most real-time rendering systems requires both data compression and the implementation of the decompression and filtering stages on contemporary graphics processing units (GPUs). This paper improves the quality of real-time per-pixel lighting on GPUs using a wavelet decomposition of acquired BRDFs. Three-dimensional texture mapping with indexing allows us to efficiently compress the BRDF data by exploiting much of the coherency between hemispherical data. We apply built-in hardware filtering and pixel shader flexibility to perform filtering in the full 4D BRDF domain. Anti-aliasing of specular highlights is performed via a progressive level-of-detail technique built upon the multiresolution of the wavelet encoding. This technique increases rendering performance on distant surfaces while maintaining accurate appearance of close ones.

[1]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[2]  Stephen Lin,et al.  Multiresolution reflectance filtering , 2005, EGSR '05.

[3]  Robert R. Lewis,et al.  Making Shaders More Physically Plausible , 1994, Comput. Graph. Forum.

[4]  Mathias Paulin,et al.  A wavelet-based framework for acquired radiometric quantity representation and accurate physical rendering , 2006, The Visual Computer.

[5]  Anselmo Lastra,et al.  Efficient rendering of spatial bi-directional reflectance distribution functions , 2002, HWWS '02.

[6]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[7]  Jan Wienold,et al.  Physical Validation of Global Illumination Methods: Measurement and Error Analysis , 2004, Comput. Graph. Forum.

[8]  Harry Shum,et al.  Eurographics Symposium on Rendering (2004) All-frequency Precomputed Radiance Transfer for Glossy Objects , 2022 .

[9]  David Salesin,et al.  Global illumination of glossy environments using wavelets and importance , 1996, TOGS.

[10]  Alain Fournier,et al.  Separating Reflection Functions for Linear Radiosity , 1995, Rendering Techniques.

[11]  Ares Lagae,et al.  Interactive Rendering with Bidirectional Texture Functions , 2003, Comput. Graph. Forum.

[12]  Reinhard Klein,et al.  Reflectance field based real-time, high-quality rendering of bidirectional texture functions , 2004, Comput. Graph..

[13]  Wojciech Matusik,et al.  Efficient Isotropic BRDF Measurement , 2003, Rendering Techniques.

[14]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[15]  Dipl.-Ing,et al.  Real-time Rendering , 2022 .

[16]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[17]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[18]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[19]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[20]  Tomas Akenine-Möller,et al.  Real-time rendering , 1997 .

[21]  John Amanatides Algorithms for the detection and elimination of specular aliasing , 1992 .

[22]  Andreas Kolb,et al.  Homomorphic factorization of BRDF-based lighting computation , 2002, ACM Trans. Graph..

[23]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[24]  Alain Fournier,et al.  Light-Driven Global Illumination with a Wavelet Representation of Light Transport , 1996, Rendering Techniques.

[25]  Paul Lalonde,et al.  A Wavelet Representation of Reflectance Functions , 1997, IEEE Trans. Vis. Comput. Graph..

[26]  Thomas Ertl,et al.  Hardware Accelerated Wavelet Transformations , 2000, VisSym.

[27]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[28]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[29]  Mathias Paulin,et al.  BRDF Measurement Modelling using Wavelets for Efficient Path Tracing , 2003, Comput. Graph. Forum.

[30]  Pierre Poulin,et al.  A model for anisotropic reflection , 1990, SIGGRAPH.

[31]  Jan Kautz,et al.  Fast Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics , 2002, Rendering Techniques.

[32]  Han-Wei Shen,et al.  GPU-based 3D wavelet reconstruction with tileboarding , 2005, The Visual Computer.

[33]  Reinhard Klein,et al.  Compression and Real-Time Rendering of Measured BTFs Using Local PCA , 2003, VMV.

[34]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[35]  S. Mallat A wavelet tour of signal processing , 1998 .

[36]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[37]  Hans-Peter Seidel,et al.  Realistic, hardware-accelerated shading and lighting , 1999, SIGGRAPH.

[38]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[39]  Hans-Peter Seidel,et al.  Real-time bump map synthesis , 2001, HWWS '01.