The Scaling Limit of the ( ∇ + 1 ) -Model

In this article we study the scaling limit of the interface model on Z d where the Hamiltonian is given by a mixed gradient and Laplacian interaction. We show that in any dimension the scaling limit is given by the Gaussian free field. We discuss the appropriate spaces in which the convergence takes place. While in infinite volume the proof is based on Fourier analytic methods,infinitevolumewerelyonsomediscretePDEtechniquesinvolvingfinite-difference approximationofellipticboundaryvalueproblems

[1]  Biltu Dan,et al.  The scaling limit of the membrane model , 2018, The Annals of Probability.

[2]  Yizao Wang,et al.  Generalized Random Fields and Lévy's Continuity Theorem on the Space of Tempered Distributions , 2017, Civil War Book Review.

[3]  M. Biskup Extrema of the Two-Dimensional Discrete Gaussian Free Field , 2017, Springer Proceedings in Mathematics & Statistics.

[4]  E. Bolthausen,et al.  Exponential Decay of Covariances for the Supercritical Membrane Model , 2016, 1609.04258.

[5]  W. Ruszel,et al.  Scaling limit of the odometer in divisible sandpiles , 2016, Probability Theory and Related Fields.

[6]  Alberto Chiarini,et al.  Extremes of Some Gaussian Random Interfaces , 2015, 1509.08903.

[7]  Alberto Chiarini,et al.  Extremes of the supercritical Gaussian Free Field , 2015, 1504.07819.

[8]  J. Nolen,et al.  Scaling limit of the corrector in stochastic homogenization , 2015, 1502.07440.

[9]  J. Mourrat,et al.  A tightness criterion for random fields, with application to the Ising model , 2015, 1502.07335.

[10]  Scott Sheffield,et al.  Fractional Gaussian fields: A survey , 2014, 1407.5598.

[11]  A. Cipriani High points for the membrane model in the critical dimension , 2013, 1303.6792.

[12]  A. Sznitman Topics in Occupation Times and Gaussian Free Fields , 2012 .

[13]  Filippo Gazzola,et al.  Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains , 2010 .

[14]  M. Borecki Pinning and Wetting Models for Polymers with (∇ + ∆)-Interaction , 2010 .

[15]  N. Kurt Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension , 2008, 0801.0551.

[16]  Julien Dubédat SLE and the free field: partition functions and couplings , 2007, 0712.3018.

[17]  O. Schramm,et al.  Contour lines of the two-dimensional discrete Gaussian free field , 2006, math/0605337.

[18]  J. Ruiz-Lorenzo,et al.  Phase transition in tensionless surfaces. , 2005, Biophysical chemistry.

[19]  T. Hida,et al.  An innovation approach to random fields : application of white noise theory , 2004 .

[20]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[21]  Hironobu Sakagawa Entropic repulsion for a Gaussian lattice field with certain finite range interaction , 2003 .

[22]  Yvan Alain Velenik,et al.  A note on the decay of correlations under δ-pinning , 2000 .

[23]  E. Bolthausen,et al.  Estimates for Dirichlet Eigenfunctions , 1999 .

[24]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[25]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[26]  Ellen Powell,et al.  Introduction to the Gaussian Free Field and Liouville Quantum Gravity , 2015 .

[27]  O. Zeitouni BRANCHING RANDOM WALKS AND GAUSSIAN FIELDS Notes for Lectures , 2012 .

[28]  F. Caravenna,et al.  LOCALIZATION FOR (1+1)-DIMENSIONAL PINNING MODELS WITH (r + ) -INTERACTION , 2010 .

[29]  S. Leibler Equilibrium Statistical Mechanics of Fluctuating Films and Membranes , 2004 .

[30]  E. Bolthausen,et al.  Localization and decay of correlations for a pinned lattice free field in dimension two , 2001 .

[31]  Reinhard Lipowsky,et al.  Generic interactions of flexible membranes , 1995 .