The Scaling Limit of the ( ∇ + 1 ) -Model
暂无分享,去创建一个
[1] Biltu Dan,et al. The scaling limit of the membrane model , 2018, The Annals of Probability.
[2] Yizao Wang,et al. Generalized Random Fields and Lévy's Continuity Theorem on the Space of Tempered Distributions , 2017, Civil War Book Review.
[3] M. Biskup. Extrema of the Two-Dimensional Discrete Gaussian Free Field , 2017, Springer Proceedings in Mathematics & Statistics.
[4] E. Bolthausen,et al. Exponential Decay of Covariances for the Supercritical Membrane Model , 2016, 1609.04258.
[5] W. Ruszel,et al. Scaling limit of the odometer in divisible sandpiles , 2016, Probability Theory and Related Fields.
[6] Alberto Chiarini,et al. Extremes of Some Gaussian Random Interfaces , 2015, 1509.08903.
[7] Alberto Chiarini,et al. Extremes of the supercritical Gaussian Free Field , 2015, 1504.07819.
[8] J. Nolen,et al. Scaling limit of the corrector in stochastic homogenization , 2015, 1502.07440.
[9] J. Mourrat,et al. A tightness criterion for random fields, with application to the Ising model , 2015, 1502.07335.
[10] Scott Sheffield,et al. Fractional Gaussian fields: A survey , 2014, 1407.5598.
[11] A. Cipriani. High points for the membrane model in the critical dimension , 2013, 1303.6792.
[12] A. Sznitman. Topics in Occupation Times and Gaussian Free Fields , 2012 .
[13] Filippo Gazzola,et al. Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains , 2010 .
[14] M. Borecki. Pinning and Wetting Models for Polymers with (∇ + ∆)-Interaction , 2010 .
[15] N. Kurt. Maximum and entropic repulsion for a Gaussian membrane model in the critical dimension , 2008, 0801.0551.
[16] Julien Dubédat. SLE and the free field: partition functions and couplings , 2007, 0712.3018.
[17] O. Schramm,et al. Contour lines of the two-dimensional discrete Gaussian free field , 2006, math/0605337.
[18] J. Ruiz-Lorenzo,et al. Phase transition in tensionless surfaces. , 2005, Biophysical chemistry.
[19] T. Hida,et al. An innovation approach to random fields : application of white noise theory , 2004 .
[20] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.
[21] Hironobu Sakagawa. Entropic repulsion for a Gaussian lattice field with certain finite range interaction , 2003 .
[22] Yvan Alain Velenik,et al. A note on the decay of correlations under δ-pinning , 2000 .
[23] E. Bolthausen,et al. Estimates for Dirichlet Eigenfunctions , 1999 .
[24] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[25] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[26] Ellen Powell,et al. Introduction to the Gaussian Free Field and Liouville Quantum Gravity , 2015 .
[27] O. Zeitouni. BRANCHING RANDOM WALKS AND GAUSSIAN FIELDS Notes for Lectures , 2012 .
[28] F. Caravenna,et al. LOCALIZATION FOR (1+1)-DIMENSIONAL PINNING MODELS WITH (r + ) -INTERACTION , 2010 .
[29] S. Leibler. Equilibrium Statistical Mechanics of Fluctuating Films and Membranes , 2004 .
[30] E. Bolthausen,et al. Localization and decay of correlations for a pinned lattice free field in dimension two , 2001 .
[31] Reinhard Lipowsky,et al. Generic interactions of flexible membranes , 1995 .