MarCHGen: A framework for generating a malware concept hierarchy

[1]  Anna Formica,et al.  Ontology-based concept similarity in Formal Concept Analysis , 2006, Inf. Sci..

[2]  Tzung-Pei Hong,et al.  An efficient and effective association-rule maintenance algorithm for record modification , 2010, Expert Syst. Appl..

[3]  Gerd Stumme,et al.  Publication Analysis of the Formal Concept Analysis Community , 2012, ICFCA.

[4]  Jacques Nicolas,et al.  Automated Enzyme Classification by Formal Concept Analysis , 2014, ICFCA.

[5]  Pierre Gançarski,et al.  Conceptual Clustering in Structured Databases: A Practical Approach , 1995, KDD.

[6]  Juan Caballero,et al.  The MALICIA dataset: identification and analysis of drive-by download operations , 2014, International Journal of Information Security.

[7]  Denys Poshyvanyk,et al.  Concept location using formal concept analysis and information retrieval , 2012, TSEM.

[8]  Stefan Katzenbeisser,et al.  Detecting Malicious Code by Model Checking , 2005, DIMVA.

[9]  Vitor Monte Afonso,et al.  Ontology for malware behavior: A core model proposal , 2014, 2014 IEEE 23rd International WETICE Conference.

[10]  Jonas Poelmans,et al.  Terrorist threat assessment with formal concept analysis , 2010, 2010 IEEE International Conference on Intelligence and Security Informatics.

[11]  James Kelly,et al.  AutoClass: A Bayesian Classification System , 1993, ML.

[12]  Tsung-Yen Chuang,et al.  Ontology-based intelligent system for malware behavioral analysis , 2010, International Conference on Fuzzy Systems.

[13]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[14]  Bernhard Ganter,et al.  Two Basic Algorithms in Concept Analysis , 2010, ICFCA.

[15]  Vilém Vychodil,et al.  Formal concept analysis and linguistic hedges , 2012, Int. J. Gen. Syst..

[16]  Amedeo Napoli,et al.  Mining gene expression data with pattern structures in formal concept analysis , 2011, Inf. Sci..

[17]  YaJun Du,et al.  Strategy for mining association rules for web pages based on formal concept analysis , 2010, Appl. Soft Comput..

[18]  Tzung-Pei Hong,et al.  A new incremental data mining algorithm using pre-large itemsets , 2001, Intell. Data Anal..

[19]  Tayssir Touili,et al.  Efficient Malware Detection Using Model-Checking , 2012, FM.

[20]  Natalya F. Noy,et al.  Semantic integration: a survey of ontology-based approaches , 2004, SGMD.

[21]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Gergely Buday Logic in Computer Science: Modelling and Reasoning About Systems by Michael Huth and Mark Ryan, second edition. ISBN 0 521 54310 X , 2008, J. Funct. Program..

[23]  Ji-Gui Sun,et al.  Clustering Algorithms Research , 2008 .

[24]  Sergei A. Obiedkov,et al.  Modeling Preferences over Attribute Sets in Formal Concept Analysis , 2012, ICFCA.

[25]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[26]  Guo-Qiang Zhang Chu Spaces, Concept Lattices, and Domains , 2003, MFPS.

[27]  Yongtae Park,et al.  Monitoring trends of technological changes based on the dynamic patent lattice: A modified formal concept analysis approach , 2011 .

[28]  Didier Dubois,et al.  Possibility theory and formal concept analysis: Characterizing independent sub-contexts , 2012, Fuzzy Sets Syst..

[29]  Sergei A. Obiedkov Modeling Ceteris Paribus Preferences in Formal Concept Analysis , 2013, ICFCA.

[30]  Vincent Duquenne,et al.  Contextual Implications between Attributes and Some Representation Properties for Finite Lattices , 2013, ICFCA.

[31]  Victoria S. Uren,et al.  Building and applying a concept hierarchy representation of a user profile , 2003, SIGIR.