A nodal finite element approximation of a phase field model for shape and topology optimization

Abstract We propose a nodal finite element method to the problem of finding optimal structural shapes based on a phase field model motivated by the work of Takezawa et al. (2010). Compared to finite differences used in the original study, the proposed method better characterizes optimal configurations and is not sensitive to initial guesses or element shapes. Using nodal finite elements as a basis, we also investigate the application of two semi-implicit time-stepping schemes, the first-order and second-order semi-implicit backward Euler time-stepping schemes (1-SBEM and 2-SBDF), to the optimization problem. We then discuss the stability of these schemes and a classic finite-difference based upwind scheme using benchmark problems of compliance minimization with volume constraints. Numerical evidences show that the nodal FEM approach alleviates the initial dependency problem of structural optimization, and the 1-SBEM scheme is more stable than the other two schemes in tracking the moving boundary.

[1]  Philip K. Maini,et al.  Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains , 2007, J. Comput. Phys..

[2]  R. Folch,et al.  Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[4]  Michael Yu Wang,et al.  Optimal topology design of continuum structures with stress concentration alleviation via level set method , 2013 .

[5]  G. Allaire,et al.  Structural optimization using topological and shape sensitivity via a level set method , 2005 .

[6]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[7]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[8]  Shinji Nishiwaki,et al.  Shape and topology optimization based on the phase field method and sensitivity analysis , 2010, J. Comput. Phys..

[9]  Feifei Zhao A nodal variable ESO (BESO) method for structural topology optimization , 2014 .

[10]  Anotida Madzvamuse,et al.  Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains , 2006, J. Comput. Phys..

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  Mathias Wallin,et al.  Optimal topologies derived from a phase-field method , 2012 .

[13]  G. Steven,et al.  Topology and shape optimization methods using evolutionary algorithms: a review , 2015 .

[14]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[16]  W. Carter,et al.  Extending Phase Field Models of Solidification to Polycrystalline Materials , 2003 .

[17]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[18]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[19]  Harald Garcke,et al.  Phase-field Approaches to Structural Topology Optimization , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[20]  Guanghui Hu,et al.  Simulating finger phenomena in porous media with a moving finite element method , 2011, J. Comput. Phys..

[21]  A. Chambolle,et al.  Design-dependent loads in topology optimization , 2003 .

[22]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[23]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[24]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[25]  G. Buttazzo,et al.  An optimal design problem with perimeter penalization , 1993 .

[26]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[27]  Takayuki Yamada,et al.  A topology optimization method based on the level set method incorporating a fictitious interface energy , 2010 .

[28]  Shiwei Zhou,et al.  Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition , 2006 .

[29]  Chunfeng Zhou,et al.  Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing , 2006, J. Comput. Phys..

[30]  Shiwei Zhou,et al.  Phase Field: A Variational Method for Structural Topology Optimization , 2004 .

[31]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[32]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[33]  Takayuki Yamada,et al.  Topology optimization using a reaction-diffusion equation , 2011 .

[34]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[35]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[36]  Arun L. Gain,et al.  Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation , 2012 .

[37]  Aranson,et al.  Continuum field description of crack propagation , 2000, Physical review letters.

[38]  Vadim Shapiro,et al.  Shape optimization with topological changes and parametric control , 2007 .

[39]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .