Evaluation of the collision stopping power of elements and compounds for electrons and positrons

This paper gives tables of material properties needed for the evaluation of the collision stopping power for electrons and positrons according to the Bethe theory. The key quantity is the mean excitation energy of the medium, which has been derived for many materials by a critical analysis of experimental data. Also given are the density-effect parameters of the theory of Sternheimer and Peierls. The material properties are given for the elements and for 180 compounds and mixtures, and the rules are described by which they could be obtained for other materials. Tables are also given of auxiliary quantities which depend only on the kinetic energy of the incident electron. These, together with the main tables, make possible the quick-and-easy evaluation of the collision stopping power.

[1]  L. Goodman A modified tissue equivalent liquid. , 1969, Health physics.

[2]  James F. Ziegler,et al.  Helium: Stopping Powers and Ranges in All Elemental Matter , 1977 .

[3]  W. J. Meath,et al.  Dipole oscillator strength distributions and sums for C2H6, C3H8, n-C4H10, n-C5H12, n-C6H14, n-C7H16, and n-C8H18 , 1981 .

[4]  L. Goodman Density and composition uniformity of A-150 tissue-equivalent plastic. , 1978, Physics in medicine and biology.

[5]  D Srdoc,et al.  Experimental technique of measurement of microscopic energy distribution in irradiated matter using Rossi counters. , 1970, Radiation research.

[6]  H. Bichsel,et al.  MEAN EXCITATION POTENTIAL OF LIGHT COMPOUNDS. , 1968 .

[7]  R. M. Sternheimer DENSITY EFFECT FOR THE IONIZATION LOSS OF CHARGED PARTICLES , 1966 .

[8]  David Y. Smith,et al.  Fermi-density effect on the stopping power of metallic aluminium , 1982 .

[9]  W. Chu,et al.  Calculation of mean excitation energy for all elements , 1972 .

[10]  L. Porter Mean excitation energy of polystyrene extracted from proton-stopping-power measurements , 1980 .

[11]  J. Ziegler,et al.  Hydrogen Stopping Powers and Ranges in All Elements , 1977 .

[12]  R. Sternheimer The Density Effect for the Ionization Loss at Low Energies , 1954 .

[13]  D. J. Dawson,et al.  Accurate Evaluation of Stopping and Straggling Mean Excitation Energies for N, O, H2, N2, O2, NO, NH3, H2 O, and N2 O Using Dipole Oscillator Strength Distributions: A Test of the Validity of Bragg's Rule , 1977 .

[14]  U. Fano,et al.  Penetration of protons, alpha particles, and mesons , 1963 .

[15]  F. H. Attix,et al.  Composition of A-150 tissue-equivalent plastic. , 1977, Medical physics.

[16]  D. R. White,et al.  Tissue substitutes in experimental radiation physics. , 1978, Medical physics.

[17]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[18]  L. Pages,et al.  Energy loss, range, and bremsstrahlung yield for 10-keV to 100-MeV electrons in various elements and chemical compounds , 1972 .

[19]  S. Ahlen Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles , 1980 .

[20]  L. Porter,et al.  Stopping power of polystyrene for 2.2 to 5.9 MeV protons , 1978 .

[21]  J. Turner,et al.  New evaluation of mean excitation energies for use in radiation dosimetry. , 1968, Health physics.

[22]  R. F. Peierls,et al.  General expression for the density effect for the ionization loss of charged particles , 1971 .

[23]  W. H. Barkas The range-energy relation in emulsion , 1958 .

[24]  F. Bloch,et al.  Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie , 1933 .

[25]  J. Hanson,et al.  Oscillator-strength moments, stopping powers, and total inelastic-scattering cross sections of all atoms through strontium , 1981 .

[26]  O. Halpern,et al.  The Ionization Loss of Energy of Fast Charged Particles in Gases and Condensed Bodies , 1948 .

[27]  J. A. Nordin,et al.  Measurement of stopping power ratios for 60 MeV positive or negative pions. , 1979, Physics in medicine and biology.

[28]  R. Sternheimer,et al.  The density effect for ionization loss in materials , 1952 .

[29]  J. Turner,et al.  Mean excitation energies for chemical elements. , 1970, Health physics.

[30]  R. H. Ritchie,et al.  Z 1 3 Effect in the Stopping Power of Matter for Charged Particles , 1972 .

[31]  Taizo Sasaki,et al.  Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: Applications to aluminum , 1980 .

[32]  M. W. Williams,et al.  Optical properties of polyethylene: measurement and applications , 1980 .

[33]  H. H. Andersen Bibliography and Index of Experimental Range and Stopping Power Data , 1977 .

[34]  F. Mozer,et al.  STOPPING CROSS SECTION OF SOLIDS FOR PROTONS, 50-600 KEV , 1956 .

[35]  D. R. Johnson,et al.  The determination of LET spectra from energy-proportional pulse-height measurements. II. A Monte Carlo unfolding procedure. , 1970, Health physics.

[36]  Enrico Fermi,et al.  The Ionization Loss of Energy in Gases and in Condensed Materials , 1940 .

[37]  J. C. Ashley Density Effect in Liquid Water , 1982 .

[38]  William J. Meath,et al.  Dipole spectrum, sums and properties of ground-state methane and their relation to the molar refractivity and dispersion energy constant , 1977 .

[39]  H. Bethe,et al.  Experimental Nuclear Physics , 1953 .

[40]  F. Rohrlich,et al.  Positron-Electron Differences in Energy Loss and Multiple Scattering , 1954 .

[41]  C. Margueron,et al.  XLIX. Observations on the oil extracted from the female cornel or dog-berry tree, the cornus sanguinea of linnœus, class 4th; Tetrandria Monogynia , 1801 .

[42]  D. J. Dawson,et al.  Dipole oscillator strength distributions, sums, and some related properties for Li, N, O, H2, N2, O2, NH3, H2O, NO, and N2O , 1977 .

[43]  D. Greene,et al.  The G-value for the ferrous sulphate dosemeter for 14 MeV neutrons. , 1973, Physics in medicine and biology.

[44]  J. C. Ashley Stopping power of liquid water for low-energy electrons , 1982 .

[45]  R. Sternheimer,et al.  Density Effect for the Ionization Loss in Various Materials , 1952 .

[46]  W. H. Bragg,et al.  XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules , 1905 .

[47]  G. Wick Sul frenamento delle particelle veloci , 1943 .