Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model.

[1]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[2]  T. Steitz,et al.  Structure of the replicating complex of a pol alpha family DNA polymerase. , 2009, Cell.

[3]  Florence Tama,et al.  The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. , 2002, Journal of molecular biology.

[4]  F. Rey,et al.  Structural Analysis of the Hepatitis C Virus RNA Polymerase in Complex with Ribonucleotides , 2002, Journal of Virology.

[5]  Willy Wriggers,et al.  Conformational flexibility of bacterial RNA polymerase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Papanicolaou,et al.  Crystal structures of a template‐independent DNA polymerase: murine terminal deoxynucleotidyltransferase , 2002, The EMBO journal.

[7]  J. Madura,et al.  Molecular dynamics of HIV‐1 reverse transcriptase indicates increased flexibility upon DNA binding , 2001, Proteins.

[8]  L. Silvian,et al.  Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus , 2001, Nature Structural Biology.

[9]  R. Woodgate,et al.  Crystal Structure of a Y-Family DNA Polymerase in Action A Mechanism for Error-Prone and Lesion-Bypass Replication , 2001, Cell.

[10]  L. Silvian,et al.  The anatomy of infidelity , 2001, Nature Structural Biology.

[11]  W. Beard,et al.  DNA lesion bypass polymerases open up. , 2001, Structure.

[12]  L. Loeb,et al.  Getting a grip on how DNA polymerases function , 2001, Nature Structural Biology.

[13]  Robert E. Johnson,et al.  Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. , 2001, Molecular cell.

[14]  T. Steitz,et al.  Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. , 2001, Molecular cell.

[15]  M. Karplus,et al.  Normal mode analysis of large systems with icosahedral symmetry: Application to (Dialanine)60 in full and reduced basis set implementations , 2001 .

[16]  T. Kunkel,et al.  The Y-family of DNA polymerases. , 2001, Molecular cell.

[17]  Thomas A. Steitz,et al.  Structure of the Replicating Complex of a Pol α Family DNA Polymerase , 2001, Cell.

[18]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[19]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[20]  E. V. Makeyev,et al.  A mechanism for initiating RNA-dependent RNA polymerization , 2001, Nature.

[21]  Y. Sanejouand,et al.  Building‐block approach for determining low‐frequency normal modes of macromolecules , 2000, Proteins.

[22]  F. Delbos,et al.  Two novel human and mouse DNA polymerases of the polX family. , 2000, Nucleic acids research.

[23]  N. Habuka,et al.  Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. , 1999, Structure.

[24]  Robert E. Johnson,et al.  Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Charles A. Lesburg,et al.  Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site , 1999, Nature Structural Biology.

[26]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[27]  T. Steitz DNA Polymerases: Structural Diversity and Common Mechanisms* , 1999, The Journal of Biological Chemistry.

[28]  E. Arnold,et al.  Major subdomain rearrangement in HIV‐1 reverse transcriptase simulated by molecular dynamics , 1999, Proteins.

[29]  T. Steitz,et al.  Structural basis for initiation of transcription from an RNA polymerase–promoter complex , 1999, Nature.

[30]  E V Koonin,et al.  DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. , 1999, Nucleic acids research.

[31]  N. Go,et al.  Investigating protein dynamics in collective coordinate space. , 1999, Current opinion in structural biology.

[32]  M. Sawaya,et al.  An open and closed case for all polymerases. , 1999, Structure.

[33]  K. Hinsen,et al.  Analysis of domain motions in large proteins , 1999, Proteins.

[34]  T. Steitz,et al.  BUILDING A REPLISOME STRUCTURE FROM INTERACTING PIECES: A SLIDING CLAMP COMPLEXED WITH AN INTERACTION PEPTIDE FROM DNA POLYMERASE , 1999 .

[35]  R L Jernigan,et al.  Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. , 1999, Journal of molecular biology.

[36]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[37]  K. Hinsen Analysis of domain motions by approximate normal mode calculations , 1998, Proteins.

[38]  Tania A Baker,et al.  Polymerases and the Replisome: Machines within Machines , 1998, Cell.

[39]  James R. Kiefer,et al.  Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal , 1998, Nature.

[40]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[41]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[42]  T. Steitz,et al.  Crystal Structure of a pol α Family Replication DNA Polymerase from Bacteriophage RB69 , 1997, Cell.

[43]  A. Atilgan,et al.  Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. , 1997, Folding & design.

[44]  Tirion,et al.  Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. , 1996, Physical review letters.

[45]  David Pérahia,et al.  Computation of Low-frequency Normal Modes in Macromolecules: Improvements to the Method of Diagonalization in a Mixed Basis and Application to Hemoglobin , 1995, Comput. Chem..

[46]  Samuel H. Wilson,et al.  Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. , 1994, Science.

[47]  Y. Sanejouand,et al.  A new approach for determining low‐frequency normal modes in macromolecules , 1994 .

[48]  Yong Je Chung,et al.  Structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution , 1993 .

[49]  Yong Je Chung,et al.  Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution , 1993, Nature.

[50]  J. Steitz,et al.  A general two-metal-ion mechanism for catalytic RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[51]  N Go,et al.  Normal mode refinement: Crystallographic refinement of protein dynamic structure , 1992 .

[52]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[53]  J. Ito,et al.  Compilation and alignment of DNA polymerase sequences. , 1991, Nucleic acids research.

[54]  K. Johnson,et al.  An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. , 1991, Biochemistry.

[55]  S Cusack,et al.  Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. , 1990, Biophysical journal.

[56]  P Argos,et al.  An attempt to unify the structure of polymerases. , 1990, Protein engineering.

[57]  I Sauvaget,et al.  Identification of four conserved motifs among the RNA‐dependent polymerase encoding elements. , 1989, The EMBO journal.

[58]  M. Levitt,et al.  Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. , 1985, Journal of molecular biology.

[59]  T. Steitz,et al.  Structure of the large fragment of E. coli DNA polymerase I complexed with dCMP , 1984 .

[60]  M. Karplus,et al.  Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[61]  N. Go,et al.  Dynamics of a small globular protein in terms of low-frequency vibrational modes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Engelman,et al.  Inelastic neutron scattering analysis of hexokinase dynamics and its modification on binding of glucose , 1982, Nature.

[63]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[64]  R. Jernigan,et al.  Anisotropy of fluctuation dynamics of proteins with an elastic network model. , 2001, Biophysical journal.

[65]  Y. Sanejouand,et al.  Conformational change of proteins arising from normal mode calculations. , 2001, Protein engineering.

[66]  H. Ago Crystal structure of the RNA-dependent RNA polymerase of hepatitis Cvirus , 1999 .

[67]  T. Steitz,et al.  Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. , 1997, Cell.

[68]  P. Cramer,et al.  Structural Basis of Transcription : RNA Polymerase II at 2 . 8 Å Resolution , 2022 .