GPU-accelerated compressive holography.

In this paper, we show fast signal reconstruction for compressive holography using a graphics processing unit (GPU). We implemented a fast iterative shrinkage-thresholding algorithm on a GPU to solve the ℓ1 and total variation (TV) regularized problems that are typically used in compressive holography. Since the algorithm is highly parallel, GPUs can compute it efficiently by data-parallel computing. For better performance, our implementation exploits the structure of the measurement matrix to compute the matrix multiplications. The results show that GPU-based implementation is about 20 times faster than CPU-based implementation.

[1]  Antonio J. Plaza,et al.  GPU implementation of a hyperspectral coded aperture algorithm for compressive sensing , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[2]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[3]  Bahram Javidi,et al.  Multidimensional imaging using compressive Fresnel holography. , 2012, Optics letters.

[4]  Adrian Stern,et al.  Reconstruction guarantees for compressive tomographic holography. , 2013, Optics letters.

[5]  Thomas E. Yankeelov,et al.  Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods , 2012, Int. J. Biomed. Imaging.

[6]  D. Brady,et al.  Video-rate compressive holographic microscopic tomography. , 2011, Optics express.

[7]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[8]  Bahram Javidi,et al.  Improved depth resolution by single-exposure in-line compressive holography. , 2013, Applied optics.

[9]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004 .

[10]  William J. Dally,et al.  The GPU Computing Era , 2010, IEEE Micro.

[11]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[12]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[13]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[14]  David J. Brady,et al.  Sampling and processing for compressive holography [Invited]. , 2011, Applied optics.

[15]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[16]  Daguang Xu,et al.  GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography. , 2014, Optics express.

[17]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[18]  Bahram Javidi,et al.  Overview of compressive sensing techniques applied in holography [Invited]. , 2013, Applied optics.

[19]  B. Javidi,et al.  Compressive Fresnel Holography , 2010, Journal of Display Technology.

[20]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[21]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[22]  Daniel L Marks,et al.  Compressive holography of diffuse objects. , 2010, Applied optics.

[23]  Yao Wang,et al.  High-Speed Compressed Sensing Reconstruction in Dynamic Parallel MRI Using Augmented Lagrangian and Parallel Processing , 2012, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.