Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking

We study numerically the collapse of rotating magnetized molecular cloud cores, focusing on rotation and magnetic braking during the main accretion phase of isolated star formation. Motivated by previous numerical work and analytic considerations, we idealize the precollapse core as a magnetized singular isothermal toroid, with a constant rotational speed everywhere. The collapse starts from the center and propagates outward in an inside-out fashion, satisfying exact self-similarity in space and time. For rotation rates and field strengths typical of dense low-mass cores, the main feature remains the flattening of the mass distribution along field lines—the formation of a pseudodisk, as in the nonrotating cases. The density distribution of the pseudodisk is little affected by rotation. On the other hand, the rotation rate is strongly modified by pseudodisk formation. Most of the centrally accreted material reaches the vicinity of the protostar through the pseudodisk. The specific angular momentum can be greatly reduced on the way, by an order of magnitude or more, even when the precollapse field strength is substantially below the critical value for dominant cloud support. The efficient magnetic braking is due to the pinched geometry of the magnetic field in the pseudodisk, which strengthens the magnetic field and lengthens the level arm for braking. Both effects enhance the magnetic transport of angular momentum from inside to outside. The excess angular momentum is carried away in a low-speed outflow that has, despite claims made by other workers, little in common with observed bipolar molecular outflows. We discuss the implications of our calculations for the formation of true disks that are supported against gravity by rotation.

[1]  Kohji Tomisaka,et al.  Collapse-Driven Outflow in Star-Forming Molecular Cores , 1998 .

[2]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[3]  J. Fiege,et al.  Prolate Cores in Filamentary Molecular Clouds , 1999, astro-ph/9909356.

[4]  S. Desch,et al.  The Magnetic Decoupling Stage of Star Formation , 2001 .

[5]  Tomisaka The Evolution of the Angular Momentum Distribution during Star Formation. , 1999, The Astrophysical journal.

[6]  Enhancement of Ambipolar Diffusion Rates through Field Fluctuations , 2002, astro-ph/0201131.

[7]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[8]  Bruce T. Draine,et al.  in Protostars and Planets II , 1985 .

[9]  E. Ostriker,et al.  Low-Mass Star Formation: Theory , 1999 .

[10]  P. Caselli,et al.  L1544: A Starless Dense Core with Extended Inward Motions , 1998 .

[11]  A. Goodman,et al.  Dense cores in dark clouds. VI - Shapes , 1991 .

[12]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[13]  C. Lada,et al.  Spectral evolution of young stellar objects , 1986 .

[14]  A. Toomre Some flattened isothermal models of galaxies , 1982 .

[15]  C. Lada,et al.  Book-Review - the Physics of Star Formation and Early Stellar Evolution , 1991 .

[16]  T. Mouschovias Single-Stage Fragmentation and a Modern Theory of Star Formation , 1991 .

[17]  S. Miyama,et al.  Analytic Solutions for Equilibrium of Rotating Isothermal Clouds -- One-Parameter Family of Axisymmetric and Conformal Configurations-- , 1982 .

[18]  F. Shu,et al.  Molecular cloud cores and bimodal star formation , 1989 .

[19]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[20]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[21]  E. Zweibel,et al.  Current Sheet Formation in the Interstellar Medium , 1997 .

[22]  D. Ward-Thompson,et al.  First Observations of the Magnetic Field Geometry in Prestellar Cores , 2000 .

[23]  J. Najita,et al.  X-Ray Ionization of Protoplanetary Disks , 1997 .

[24]  R. Larson The physics of star formation , 2003, astro-ph/0306595.

[25]  U. Virginia,et al.  Binary and Multiple Star Formation in Magnetic Clouds: Bar Growth and Fragmentation , 2003, astro-ph/0305317.

[26]  S. Basu,et al.  Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. I. Axisymmetric solutions , 1994 .

[27]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[28]  G. Laughlin,et al.  Singular Isothermal Disks. II. Nonaxisymmetric Bifurcations and Equilibria , 2000, astro-ph/0012242.

[29]  R. Nishi,et al.  Magnetic flux loss from interstellar clouds with various grain-size distributions , 1991 .

[30]  Alyssa A. Goodman,et al.  Measurement of Magnetic Field Strength in the Dark Cloud Barnard 1 , 1989 .

[31]  Telemachos Ch. Mouschovias,et al.  in The Origin of Stars and Planetary Systems , 1999 .

[32]  M. Reid,et al.  OH masers and the Galactic magnetic field , 1990 .

[33]  F. Shu,et al.  Relativistic Singular Isothermal Toroids , 2003, astro-ph/0302474.

[34]  V. Ferraro The non-uniform rotation of the Sun and its magnetic field , 1937 .

[35]  Y. Fukui Molecular clouds and star formation , 2005 .

[36]  B. Wilson Magnetic Fields in Star-forming Molecular Clouds. V. Submillimeter Polarization of the Barnard 1 Dark Cloud , 2002, astro-ph/0205328.

[37]  R. Crutcher,et al.  OH Zeeman Measurement of the Magnetic Field in the L1544 Core , 2000 .

[38]  Frank H. Shu,et al.  Magnetized Singular Isothermal Toroids , 1996 .

[39]  K. Tomisaka Collapse of Rotating Magnetized Molecular Cloud Cores and Mass Outflows , 2001, astro-ph/0105527.

[40]  M. Claussen,et al.  High-resolution observations of ionized gas in central 3 parsecs of the Galaxy: possible evidence for infall , 1983, Nature.

[41]  Zhi-Yun Li,et al.  Self-Similar Collapse of an Isopedic Isothermal Disk , 1997 .

[42]  F. Shu,et al.  Heating and Ionization of X-Winds , 2001, astro-ph/0110539.

[43]  Peter Goldreich,et al.  I. Gravitational Stability of Uniformly Rotating Disks , 1965 .

[44]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[45]  P. Andre',et al.  Molecular line study of the very young protostar IRAM 04191 in Taurus: Infall, rotation, and outflow , 2002, astro-ph/0207287.

[46]  Andrea Richichi,et al.  A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions , 1995 .

[47]  STRUCTURE AND EVOLUTION OF MAGNETICALLY SUPPORTED MOLECULAR CLOUDS : EVIDENCE FOR AMBIPOLAR DIFFUSION IN THE BARNARD 1 CLOUD , 1994 .

[48]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[49]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[50]  Telemachos Ch. Mouschovias,et al.  Magnetic Fields and Star Formation: A Theory Reaching Adulthood , 1999 .

[51]  Zhi-Yun Li,et al.  Hydromagnetic Accretion Shocks around Low-Mass Protostars , 1996 .

[52]  F. Motte,et al.  Discovery of an Extremely Young Accreting Protostar in Taurus , 1999 .

[53]  F. Shu,et al.  Relativistic Self-similar Disks , 2001, astro-ph/0111344.

[54]  G. Blake,et al.  High-Resolution 4.7 micron Keck/NIRSPEC Spectra of Protostars. I. Ices and Infalling Gas in the Disk of L1489 IRS , 2001, astro-ph/0112163.