Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia

Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and β-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

[1]  G. Trejo-Tapia,et al.  Influence of the culture medium constituents and inoculum size on the accumulation of blue pigment and cell growth of Lavandula spica , 2004, Plant Cell, Tissue and Organ Culture.

[2]  J. Wilkinson,et al.  Biological activities of Lavender essential oil , 2002, Phytotherapy research : PTR.

[3]  N. Yaylı,et al.  Characterization of Lipids and Fatty Acid Methyl Ester Contents in Leaves and Roots of Crocus vallicola , 2001 .

[4]  A. Pavlov,et al.  Release of rosmarinic acid by Lavandula vera MM cell suspension in two-phase culture systems , 2001 .

[5]  A. Pavlov,et al.  Nutrient Medium Optimization for Rosmarinic Acid Production by Lavandula vera MM Cell Suspension , 2000, Biotechnology progress.

[6]  A. Pavlov,et al.  Rosmarinic acid production by Lavandula vera MM cell suspension culture: nitrogen effect , 1999 .

[7]  A. Pavlov,et al.  The influence of phenylalanine on accumulation of rosmarinic and caffeic acids by Lavandula vera MM cell culture , 1999 .

[8]  A. Pavlov,et al.  Rosmarinic acid production by Lavandula vera MM cell-suspension culture , 1997, Applied Microbiology and Biotechnology.

[9]  A. Pavlov,et al.  Rosmarinic acid from Lavandula vera MM cell culture , 1996 .

[10]  D. V. Banthorpe,et al.  Stimulation of accumulation of terpenoids by cell suspensions of Lavandula angustifolia following pre-treatment of parent callus , 1995 .

[11]  S. Begum,et al.  Minor iridoids from the leaves of Plumeria obtusa , 1994 .

[12]  J. Zapata,et al.  Tentative evidence of a rosmarinic acid peroxidase in cell cultures from lavandin (Lavandula x intermedia) flowers. , 1994, Biochemistry and molecular biology international.

[13]  M. Maffei,et al.  Fatty acids from some Lavandula hybrids growing spontaneously in north west italy , 1993 .

[14]  P. Bozov,et al.  Triterpenoids from Lavandula spica , 1992 .

[15]  P. Marin,et al.  Fatty acids of the Saturejoideae, Ajugoideae and Scutellarioideae (Lamiaceae) , 1991 .

[16]  Yasuyuki Yamada,et al.  Influence of carbon source on pigment production by immobilized cultured cells of lavandula vera , 1989 .

[17]  D. V. Banthorpe,et al.  Enol esters of caffeic acid in several genera of the Labiatae , 1989 .

[18]  Yasuyuki Yamada,et al.  Enhancement of pigment productivity of immobilized cultured Lavandula vera cells by limitation of nitrogen sources , 1989 .

[19]  J. Tampion,et al.  Biotransformation of monoterpenoids by suspension cultures of Lavandula angustifolia , 1987 .

[20]  V. Njar,et al.  Ability of plant callus cultures to synthesize and accumulate lower terpenoids , 1986 .

[21]  D. G. Watson,et al.  Pigment formation by callus of Lavandula angustifolia , 1985 .

[22]  D. V. Banthorpe,et al.  Monoterpene synthesis in shoots regenerated from callus cultures , 1984 .

[23]  R. Robinson Phytochemistry , 1962, Nature.

[24]  W. Karrer Konstitution und Vorkommen der organischen Pflanzenstoffe , 1958 .