Holographic laser Doppler imaging of microvascular blood flow.

We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time-averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency-shifted reference beam, permits frequency-selective imaging in the radio frequency range. These Doppler images are acquired with an off-axis Mach-Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse-method analysis of local first-order optical fluctuation spectra at low radio frequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1-10 mm/s range in vitro and imaging of superficial blood perfusion with a spatial resolution of about 10 micrometers in rodent models of cortical and retinal blood flow.

[1]  Andrew K. Dunn,et al.  Laser Speckle Contrast Imaging of Cerebral Blood Flow , 2011, Annals of Biomedical Engineering.

[3]  C. Riva,et al.  Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study. , 1993, Investigative ophthalmology & visual science.

[4]  J. Schmitt,et al.  Use of polarized light to discriminate short-path photons in a multiply scattering medium. , 1992, Applied optics.

[5]  M. Atlan,et al.  Short-time Fourier transform laser Doppler holography , 2012, 1211.5452.

[6]  A. Korpel,et al.  Probing of acoustic surface perturbations by coherent light. , 1969, Applied optics.

[7]  W. J. Tom,et al.  Robust flow measurement with multi-exposure speckle imaging. , 2008, Optics express.

[8]  S. Zehetmayer,et al.  Microvascular autoregulation in children and adolescents with type 1 diabetes mellitus , 2012, Diabetologia.

[9]  Alfred Buck,et al.  Quantitative modeling of laser speckle imaging. , 2006, Optics letters.

[10]  Michael Atlan,et al.  Spatiotemporal heterodyne detection. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  D. Gillespie,et al.  Dynamic Light Scattering , 1985 .

[12]  Yiqun Zhu,et al.  Low resource processing algorithms for laser Doppler blood flow imaging. , 2011, Medical engineering & physics.

[13]  M. Moskowitz,et al.  Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[15]  Michael Atlan,et al.  Parallel heterodyne detection of dynamic light-scattering spectra from gold nanoparticles diffusing in viscous fluids. , 2010, Optics letters.

[16]  Holographic recording of a retina using a continuous wave laser. , 1970, Investigative ophthalmology.

[17]  L. Schmetterer,et al.  Comparison of choroidal and optic nerve head blood flow regulation during changes in ocular perfusion pressure. , 2012, Investigative ophthalmology & visual science.

[18]  Yaguang Zeng,et al.  Laser speckle imaging based on intensity fluctuation modulation. , 2013, Optics letters.

[19]  A. Dunn,et al.  Frequency-domain wide-field laser Doppler in vivo imaging. , 2006, Optics letters.

[20]  M. Nikolić,et al.  Self-mixing laser Doppler flow sensor: an optofluidic implementation. , 2013, Applied optics.

[21]  J. Belch,et al.  Current concepts in assessment of microvascular endothelial function using laser Doppler imaging and iontophoresis. , 2008, Trends in cardiovascular medicine.

[22]  David J. Pine,et al.  Diffusing-wave spectroscopy in a shear flow , 1990 .

[23]  A. Shore,et al.  The biological zero signal in laser doppler fluximetry – origins and practical implications , 1999, Pflügers Archiv.

[24]  C. Riva,et al.  Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. , 1972, Investigative ophthalmology.

[25]  J. Briers,et al.  Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. , 2001, Physiological measurement.

[26]  R. Bonner,et al.  Microvascular Blood Flow, Volume, and Velocity Measured by Laser Doppler Techniques in IDDM , 1989, Diabetes.

[27]  G Michelson,et al.  Principle, Validity, and Reliability of Scanning Laser Doppler Flowmetry , 1996, Journal of glaucoma.

[28]  Anne Humeau-Heurtier,et al.  Relevance of Laser Doppler and Laser Speckle Techniques for Assessing Vascular Function: State of the Art and Future Trends , 2013, IEEE Transactions on Biomedical Engineering.

[29]  Roger Maynard,et al.  Imaging of dynamic heterogeneities in multiple-scattering media , 1997 .

[30]  R Nossal,et al.  Scaling relationships for theories of anisotropic random walks applied to tissue optics. , 1993, Applied optics.

[31]  G. T. Feke,et al.  Retinal haemodynamics in patients with age-related macular degeneration , 2006, Eye.

[32]  Nicolas Verrier,et al.  Laser Doppler holographic microscopy in transmission: application to fish embryo imaging. , 2014, Optics express.

[33]  U. Schnars,et al.  Direct recording of holograms by a CCD target and numerical reconstruction. , 1994, Applied optics.

[34]  P. Picart,et al.  General theoretical formulation of image formation in digital Fresnel holography. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  Andrew K. Dunn,et al.  Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging , 2010, Biomedical optics express.

[36]  Maho Shibata,et al.  Optic Nerve Head Blood Flow in Glaucoma , 2012 .

[37]  A. N. Rosen,et al.  Holographic fundoscopy with fibre optic illumination , 1975 .

[38]  Theo Lasser,et al.  Real-time full field laser Doppler imaging , 2011, Biomedical optics express.

[39]  Stephen P. Morgan,et al.  Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing , 2013, Sensors.

[40]  Andrew K. Dunn,et al.  Laser speckle contrast imaging of blood flow in rat retinas using an endoscope , 2013, Journal of biomedical optics.

[41]  S. McKee,et al.  Visual acuity in the presence of retinal-image motion. , 1975, Journal of the Optical Society of America.

[42]  M Simonutti,et al.  Holographic laser Doppler ophthalmoscopy. , 2010, Optics letters.

[43]  Ton van Leeuwen,et al.  Burn imaging with a whole field laser Doppler perfusion imager based on a CMOS imaging array. , 2009, Burns : journal of the International Society for Burn Injuries.

[44]  H. Ohzu,et al.  Application of Holography in Ophthalmology , 1979 .

[45]  Werner Jüptner,et al.  Digital recording and numerical reconstruction of holograms , 2002 .

[46]  C E Riva,et al.  Laser Doppler measurements of blood velocity in human retinal vessels. , 1978, Journal of the Optical Society of America.

[47]  Directional pedestal-free laser Doppler velocimetry without frequency biasing. Part 1. , 1980, Applied optics.

[48]  D. Weitz,et al.  Diffusing wave spectroscopy. , 1988, Physical review letters.

[49]  Anders M. Dale,et al.  Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex , 2005, NeuroImage.

[50]  M. Atlan,et al.  Laser Doppler imaging of microflow , 2006, 1312.6221.

[51]  J A Crowe,et al.  64×64 pixel smart sensor array for laser Doppler blood flow imaging. , 2012, Optics letters.

[52]  Can Ince,et al.  Laser speckle imaging identification of increases in cortical microcirculatory blood flow induced by motor activity during awake craniotomy. , 2013, Journal of neurosurgery.

[53]  D. Boas,et al.  Laser speckle contrast imaging in biomedical optics. , 2010, Journal of biomedical optics.

[54]  Jean-Luc Cracowski,et al.  Methodological issues in the assessment of skin microvascular endothelial function in humans. , 2006, Trends in pharmacological sciences.

[55]  Myung K. Kim,et al.  Interference techniques in digital holography , 2006 .

[56]  Gert E. Nilsson,et al.  Evaluation of a Laser Doppler Flowmeter for Measurement of Tissue Blood Flow , 1980, IEEE Transactions on Biomedical Engineering.

[57]  M. Atlan,et al.  Digital holography with ultimate sensitivity. , 2008, Optics letters.

[58]  R. D. Ferguson,et al.  Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope. , 2004, Optics express.

[59]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[60]  G. Rayman,et al.  Small fibre dysfunction, microvascular complications and glycaemic control in type 1 diabetes: a case–control study , 2012, Diabetologia.

[61]  A. Shore,et al.  Capillary pressure may predict preclinical changes in the eye , 2010, Diabetologia.

[62]  Ruikang K. Wang,et al.  Directional blood flow imaging in volumetric optical microangiography achieved by digital frequency modulation. , 2008, Optics letters.

[63]  M. Wolzt,et al.  Ocular blood flow and associated functional deviations in diabetic retinopathy , 1999, Diabetologia.

[64]  M. Araie,et al.  A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. , 2008, Ophthalmology.

[65]  Yu Shang,et al.  Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement. , 2012, Journal of biomedical optics.

[66]  D. Durian,et al.  Speckle-visibility spectroscopy: A tool to study time-varying dynamics , 2005, cond-mat/0506081.

[67]  Michael Atlan,et al.  Off-axis digital hologram reconstruction: some practical considerations. , 2011, Applied optics.

[68]  Y. Yeh,et al.  Localized fluid flow measurements with an He-Ne laser spectrometer , 1964 .

[69]  B. Heijnen,et al.  Phenotyping the Microcirculation , 2012, Hypertension.

[70]  A C Boccara,et al.  High-speed wave-mixing laser Doppler imaging in vivo. , 2008, Optics letters.

[71]  M Roustit,et al.  Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. , 2010, Microvascular research.

[72]  L Rovati,et al.  In-vivo diffusing-wave-spectroscopy measurements of the ocular fundus. , 2007, Optics express.

[73]  J. D. Briers,et al.  Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields , 1995 .

[74]  A. Dale,et al.  Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. , 2003, Optics letters.

[75]  J. David Briers,et al.  Laser Doppler and time-varying speckle: a reconciliation , 1996 .

[76]  T. Duong,et al.  Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging. , 2008, Optics express.

[77]  T. Durduran,et al.  Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue , 2014, Biomedical optics express.

[78]  D. Royer,et al.  Optical probing of the mechanical impulse response of a transducer , 1986 .

[79]  M. Stern,et al.  In vivo evaluation of microcirculation by coherent light scattering , 1975, Nature.

[80]  Andrew K Dunn,et al.  Low-cost laser speckle contrast imaging of blood flow using a webcam. , 2013, Biomedical optics express.

[81]  R. Nossal,et al.  Model for laser Doppler measurements of blood flow in tissue. , 1981, Applied optics.

[82]  Theo Lasser,et al.  Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera. , 2005, Optics express.

[83]  S. Gigan,et al.  Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. , 2011, Optics express.

[84]  Ton van Leeuwen,et al.  Review of laser speckle contrast techniques for visualizing tissue perfusion , 2008, Lasers in Medical Science.

[85]  Ton van Leeuwen,et al.  Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging. , 2009, Optics express.

[86]  James B. Spicer,et al.  Theoretical noise-limited sensitivity of classical interferometry , 1987 .

[87]  Wiendelt Steenbergen,et al.  Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor. , 2002, Optics letters.

[88]  Erik L Ritman,et al.  The human cutaneous circulation as a model of generalized microvascular function. , 2008, Journal of applied physiology.

[89]  Ruikang K. Wang,et al.  High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth , 2013, Biomedical optics express.

[90]  M. Rousseau Statistical Properties of Optical Fields Scattered by Random Media. Application to Rotating Ground Glass , 1971 .

[91]  Junbo Chen,et al.  In vivo label-free microangiography by laser speckle imaging with intensity fluctuation modulation , 2013, Journal of biomedical optics.

[92]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[93]  Pranab K. Dutta,et al.  Review of laser speckle-based analysis in medical imaging , 2012, Medical & Biological Engineering & Computing.

[94]  Luigi Rovati,et al.  In vivo diffuse correlation spectroscopy investigation of the ocular fundus , 2013, Journal of biomedical optics.

[95]  Heterodyne interferometer with unequal path lengths , 2006, physics/0608082.

[96]  Silvano Donati,et al.  Optical feedback interferometry for sensing application , 2001 .

[97]  D. Boas,et al.  Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation , 1997 .

[98]  Pascal Picart,et al.  Time-averaged digital holography. , 2003, Optics letters.

[99]  V. Rajan,et al.  Review of methodological developments in laser Doppler flowmetry , 2009, Lasers in Medical Science.

[100]  N. Wiener Generalized harmonic analysis , 1930 .

[101]  M. Atlan,et al.  Laser Doppler imaging, revisited , 2006 .

[102]  A. Seifalian,et al.  A mathematical analysis on the biological zero problem in laser Doppler flowmetry , 1998, IEEE Transactions on Biomedical Engineering.

[103]  C. Lang,et al.  Relationship between peripheral and coronary function using laser Doppler imaging and transthoracic echocardiography. , 2008, Clinical science.

[104]  Ton G van Leeuwen,et al.  Oxygen saturation-dependent absorption and scattering of blood. , 2004, Physical review letters.

[105]  T Sato,et al.  Signal-to-noise ratio and smallest detectable vibration amplitude in frequency-translated holography: an analysis. , 1976, Applied optics.

[106]  J. Briers,et al.  Flow visualization by means of single-exposure speckle photography , 1981 .

[107]  C E Riva,et al.  Bidirectional LDV system for absolute measurement of blood speed in retinal vessels. , 1979, Applied optics.

[108]  L A RIGGS,et al.  Motions of the retinal image during fixation. , 1954, Journal of the Optical Society of America.

[109]  F F de Mul,et al.  Mini laser-Doppler (blood) flow monitor with diode laser source and detection integrated in the probe. , 1984, Applied optics.

[110]  Douglas J. Fox,et al.  Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. , 2010, Journal of biomedical optics.

[111]  Donald D Duncan,et al.  Can laser speckle flowmetry be made a quantitative tool? , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[112]  Dake Wang,et al.  Intensity fluctuation spectra of dynamic laser speckle patterns acquired by a full-field temporal modulation method. , 2012, Applied optics.

[113]  K. D. Vaughan,et al.  Holography using a fundus camera. , 1972, Applied optics.

[114]  Stephen P Morgan,et al.  Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing. , 2008, Applied optics.

[115]  B Waeber,et al.  Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. , 2000, Journal of cardiovascular pharmacology.

[116]  J. Flanagan,et al.  Vascular Reactivity of Optic Nerve Head and Retinal Blood Vessels in Glaucoma—A Review , 2010, Microcirculation.

[117]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[118]  Michael Atlan,et al.  Video-rate laser Doppler vibrometry by heterodyne holography. , 2011, Optics letters.

[119]  Haiying Cheng,et al.  Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging. , 2007, Optics letters.

[120]  H. Struijker‐Boudier,et al.  The Microcirculation and Hypertension , 1992 .

[121]  David Huang,et al.  Relationship among visual field, blood flow, and neural structure measurements in glaucoma. , 2012, Investigative ophthalmology & visual science.

[122]  Jean-Pierre Monchalin,et al.  Heterodyne interferometric laser probe to measure continuous ultrasonic displacements , 1985 .

[123]  F Scheffold,et al.  Dynamic laser speckle imaging of cerebral blood flow. , 2009, Optics express.

[124]  Kate Grieve,et al.  Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. , 2004, Investigative ophthalmology & visual science.

[125]  A R Tokuda,et al.  Holocamera for 3-D micrography of the alert human eye. , 1980, Applied optics.

[126]  Gilles Tessier,et al.  A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation , 2013, 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).

[127]  Lee E. Estes,et al.  Scattering of Light from a Rotating Ground Glass , 1971 .

[128]  F. Scheffold,et al.  Year : 2009 Dynamic laser speckle imaging of cerebral blood , 2009 .

[129]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.