Primitive semifields of order $$2^{4e}$$24e

We prove that all sufficient large finite semifields of center $${\mathbb {F}}_{2^e}$$F2e and order $$2^{4e}$$24e are right and left primitive.

[1]  H. Davenport,et al.  ON PRIMITIVE ROOTS IN FINITE FIELDS , 1937 .

[2]  Guillermo Matera,et al.  Improved explicit estimates on the number of solutions of equations over a finite field , 2006, Finite Fields Their Appl..

[3]  D. M. Clark Theory of Groups , 2012 .

[4]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[5]  P. Dembowski Finite geometries , 1997 .

[6]  Arthur M. Johnson,et al.  Made in New York : case studies in metropolitan manufacturing , 1959 .

[7]  G. Wene On the multiplicative structure of finite division rings , 1991 .

[8]  I. F. Rúa,et al.  On the primitivity of four-dimensional finite semifields , 2015, Finite Fields Their Appl..

[9]  Irvin Roy Hentzel,et al.  Primitivity of Finite semifields with 64 and 81 Elements , 2007, Int. J. Algebra Comput..

[10]  Minerva Cordero,et al.  A survey of finite semifields , 1999, Discret. Math..

[11]  L. Carlitz,et al.  Primitive roots in a finite field , 1952 .

[12]  I. F. Rúa Primitive and Non Primitive Finite Semifields , 2004 .

[13]  D. Knuth A class of projective planes , 1965 .

[14]  D. Knuth Finite semifields and projective planes , 1965 .

[15]  L. Carlitz DISTRIBUTION OF PRIMITIVE ROOTS IN A FINITE FIELD , 1953 .

[16]  Vikram Jha,et al.  Fractional dimensions in semifields of odd order , 2011, Des. Codes Cryptogr..

[17]  John Sheekey,et al.  On primitive elements in finite semifields , 2011, Finite Fields Their Appl..