Fermi-LATγ-Ray Study of the Interstellar Medium and Cosmic Rays in the Chamaeleon Molecular Cloud Complex: A Look at the Dark Gas as Optically Thick H i

We report a Fermi-LAT $\gamma$-ray analysis for the Chamaeleon molecular-cloud complex using a total column density (NH) model based on the dust optical depth at 353 GHz ($\tau_{353}$) with the Planck thermal dust emission model. Gamma rays with energy from 250 MeV to 100 GeV are fitted with the NH model as a function of $\tau_{353}$, NH $\propto$ $\tau_{353}^{1/\alpha}$ ($\alpha$ $\geq$ 1.0), to explicitly take into account a possible nonlinear $\tau_{353}$/NH ratio. We found that a nonlinear relation, $\alpha$$\sim$1.4, gives the best fit to the $\gamma$-ray data. This nonlinear relation may indicate dust evolution effects across the different gas phases. Using the best-fit NH model, we derived the CO-to-H2 conversion factor (XCO) and gas mass, taking into account uncertainties of the NH model. The value of XCO is found to be (0.63-0.76) $\times$10$^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s, which is consistent with that of a recent $\gamma$-ray study of the Chamaeleon region. The total gas mass is estimated to be (6.0-7.3) $\times$ 10$^{4}$ Msun, of which the mass of additional gas not traced by standard HI or CO line surveys is 20-40%. The additional gas amounts to 30-60% of the gas mass estimated in the case of optically thin HI and has 5-7 times greater mass than the molecular gas traced by CO. Possible origins of the additional gas are discussed based on scenarios of optically thick HI and CO-dark H2. We also derived the $\gamma$-ray emissivity spectrum, which is consistent with the local HI emissivity derived from LAT data within the systematic uncertainty of $\sim$20%

[1]  Igor V. Moskalenko,et al.  Cosmic-Ray Propagation and Interactions in the Galaxy , 2007 .

[2]  P. Andre',et al.  CHANGES OF DUST OPACITY WITH DENSITY IN THE ORION A MOLECULAR CLOUD , 2012, 1211.6475.

[3]  G. W. Pratt,et al.  Planck intermediate results. XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies , 2013, 1312.5446.

[4]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[5]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[6]  J. Chiang,et al.  ERRATUM: “FERMI LARGE AREA TELESCOPE STUDY OF COSMIC-RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS” (2012, ApJ, 755, 22) , 2013 .

[7]  T. Hayakawa,et al.  A New Derivation of the Extinction-to-CO Column Density Ratio in the Chamaeleon I Dark Cloud , 1999 .

[8]  C. A. Oxborrow,et al.  Planck 2013 results. XIII. Galactic CO emission , 2013, 1303.5073.

[9]  H. Yamamoto,et al.  OPTICALLY THICK H i DOMINANT IN THE LOCAL INTERSTELLAR MEDIUM: AN ALTERNATIVE INTERPRETATION TO “DARK GAS” , 2014, 1403.0999.

[10]  P. Kalberla,et al.  GASS: The Parkes Galactic All-Sky Survey - Update: improved correction for instrumental effects and new data release , 2015, 1505.01011.

[11]  H. Yamamoto,et al.  QUANTIFYING THE INTERSTELLAR MEDIUM AND COSMIC RAYS IN THE MBM 53, 54, AND 55 MOLECULAR CLOUDS AND THE PEGASUS LOOP USING FERMI-LAT GAMMA-RAY OBSERVATIONS , 2016, 1610.08596.

[12]  J. Casandjian LOCAL H i EMISSIVITY MEASURED WITH FERMI-LAT AND IMPLICATIONS FOR COSMIC-RAY SPECTRA , 2015 .

[13]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[14]  A. Strong,et al.  Propagation of Cosmic-Ray Nucleons in the Galaxy , 1998, astro-ph/9807150.

[15]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[16]  Y. Fukui,et al.  A Large Scale 12CO (J=1−0) Survey toward the Chamaeleon Region with NANTEN , 2001 .

[17]  Vlasios Vasileiou,et al.  THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION , 2012 .

[18]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[19]  S. Digel,et al.  EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis through Cycle 6 , 1999, astro-ph/9902214.

[20]  K. Hayashi,et al.  H i, CO, and Dust in the Perseus Cloud , 2016, 1612.07696.

[21]  D. L. Bertsch,et al.  The Likelihood Analysis of EGRET Data , 1996 .

[22]  M. Halpern,et al.  EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY , 2011, 1112.5433.

[23]  T. Brandt,et al.  A Method for Exploring Systematics Due to Galactic Interstellar Emission Modeling: Application to the Fermi LAT SNR Catalog , 2013, 1304.1395.

[24]  R. Klessen,et al.  Modelling CO emission – I. CO as a column density tracer and the X factor in molecular clouds , 2010, 1011.2019.

[25]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[26]  D. Thompson,et al.  FERMI LARGE AREA TELESCOPE STUDY OF COSMIC RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS , 2012 .

[27]  J. Chiang,et al.  GAMMA-RAY OBSERVATIONS OF THE ORION MOLECULAR CLOUDS WITH THE FERMI LARGE AREA TELESCOPE , 2012, The Astrophysical Journal.

[28]  K. Hayashi,et al.  Synthetic Observations of 21 cm H i Line Profiles from Inhomogeneous Turbulent Interstellar H i Gas with Magnetic Fields , 2017, The Astrophysical Journal.

[29]  C. A. Oxborrow,et al.  Planck intermediate results - XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck , 2014, 1409.3268.

[30]  J. Dickey,et al.  , CO, AND PLANCK/IRAS DUST PROPERTIES IN THE HIGH LATITUDE CLOUD COMPLEX, MBM 53, 54, 55 AND HLCG 92 − 35. POSSIBLE EVIDENCE FOR AN OPTICALLY THICK ENVELOPE AROUND THE CO CLOUDS , 2014, 1401.7398.

[31]  J. Peek,et al.  Optically Thick H i Does Not Dominate Dark Gas in the Local ISM , 2018, The Astrophysical Journal.

[32]  M. Mori Nuclear enhancement factor in calculation of Galactic diffuse gamma-rays: A new estimate with DPMJET-3 , 2009, 0903.3260.

[33]  M. Pérault,et al.  Diffuse infrared emission from the galaxy. I: Solar neighborhood , 1988 .

[34]  S. Digel,et al.  Gamma-ray observations of Ophiuchus with EGRET: The diffuse emission and point sources , 1994 .

[35]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[36]  A. Franckowiak,et al.  FERMI-LAT OBSERVATIONS OF HIGH- AND INTERMEDIATE-VELOCITY CLOUDS: TRACING COSMIC RAYS IN THE HALO OF THE MILKY WAY , 2015, The Astrophysical journal.

[37]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[38]  A. Strong,et al.  Inverse Compton Origin of the Hard X-Ray and Soft Gamma-Ray Emission from the Galactic Ridge , 2008, 0804.1774.

[39]  C. Dominik,et al.  UvA-DARE ( Digital Academic Repository ) Dust coagulation and fragmentation in molecular clouds : II . The opacity of the dust aggregate size distribution , 2011 .

[40]  D. Thompson,et al.  CONSTRAINTS ON THE COSMIC-RAY DENSITY GRADIENT BEYOND THE SOLAR CIRCLE FROM FERMI γ-RAY OBSERVATIONS OF THE THIRD GALACTIC QUADRANT , 2010, 1011.0816.

[41]  D. Marshall,et al.  Cosmic rays, gas and dust in nearby anticentre clouds : I -- CO-to-H2 conversion factors and dust opacities , 2017, 1703.05237.

[42]  C. Heiles,et al.  THE MILLENNIUM ARECIBO 21-CM ABSORPTION LINE SURVEY . II . PROPERTIES OF THE WARM AND COLD NEUTRAL MEDIA , 2002 .

[43]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[44]  R. Klessen,et al.  CO-dark gas and molecular filaments in Milky Way-type galaxies , 2014, 1403.1589.

[45]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[46]  T. Dame,et al.  Molecular Clouds in the Milky Way , 2015 .

[47]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[48]  T. Hayakawa,et al.  CO Column Density and Extinction in the Chamaeleon II--III Dark-Cloud Complex , 2001 .

[49]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[50]  S. Inutsuka,et al.  FORMATION OF TURBULENT AND MAGNETIZED MOLECULAR CLOUDS VIA ACCRETION FLOWS OF H i CLOUDS , 2012, 1205.6217.

[51]  D. Marshall,et al.  Cosmic-rays, gas, and dust in nearby anticentre clouds : II -- Interstellar phase transitions and the Dark Neutral Medium , 2017, 1711.05506.

[52]  D. Bhattacharya,et al.  A New Σ-D Relation and Its Application to the Galactic Supernova Remnant Distribution , 1998, astro-ph/9807162.

[53]  Isabelle A. Grenier,et al.  Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood , 2005, Science.

[54]  J. Dickey,et al.  H I in the Galaxy , 1990 .