Enhanced Precision Through Multiple Reads for LDPC Decoding in Flash Memories

Multiple reads of the same Flash memory cell with distinct word-line voltages provide enhanced precision for LDPC decoding. In this paper, the word-line voltages are optimized by maximizing the mutual information (MI) of the quantized channel. The enhanced precision from a few additional reads allows frame error rate (FER) performance to approach that of full-precision soft information and enables an LDPC code to significantly outperform a BCH code. A constant-ratio constraint provides a significant simplification in the optimization with no noticeable loss in performance. For a well-designed LDPC code, the quantization that maximizes the mutual information also minimizes the FER in our simulations. However, for an example LDPC code with a high error floor caused by small absorbing sets, the MMI quantization does not provide the lowest frame error rate. The best quantization in this case introduces more erasures than would be optimal for the channel MI in order to mitigate the absorbing sets of the poorly designed code. The paper also identifies a trade-off in LDPC code design when decoding is performed with multiple precision levels; the best code at one level of precision will typically not be the best code at a different level of precision.

[1]  Jae-Duk Lee,et al.  Effects of floating-gate interference on NAND flash memory cell operation , 2002, IEEE Electron Device Letters.

[2]  Paul H. Siegel,et al.  Storage Coding for Wear Leveling in Flash Memories , 2009, IEEE Transactions on Information Theory.

[3]  Tong Zhang,et al.  Exploiting Heat-Accelerated Flash Memory Wear-Out Recovery to Enable Self-Healing SSDs , 2011, HotStorage.

[4]  Lara Dolecek,et al.  Graded Bit-Error-Correcting Codes With Applications to Flash Memory , 2013, IEEE Transactions on Information Theory.

[5]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[6]  Tong Zhang,et al.  Improving Multi-Level NAND Flash Memory Storage Reliability Using Concatenated BCH-TCM Coding , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[7]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[8]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[9]  J. Kim,et al.  Girth conditioning for construction of short block length irregular LDPC codes , 2004 .

[10]  Paul H. Siegel,et al.  Characterization and error-correcting codes for TLC flash memories , 2012, 2012 International Conference on Computing, Networking and Communications (ICNC).

[11]  Lara Dolecek,et al.  Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based LDPC Codes , 2009, IEEE Transactions on Information Theory.

[12]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[15]  Tong Zhang,et al.  On the Use of Soft-Decision Error-Correction Codes in nand Flash Memory , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Lara Dolecek,et al.  The Cycle Consistency Matrix Approach to Absorbing Sets in Separable Circulant-Based LDPC Codes , 2012, IEEE Transactions on Information Theory.

[17]  Jeremy Thorpe,et al.  Memory-efficient decoding of LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[18]  Brian M. Kurkoski,et al.  Quantization of Binary-Input Discrete Memoryless Channels, with Applications to LDPC Decoding , 2011, ArXiv.

[19]  Fan Zhang,et al.  LDPC codes for rank modulation in flash memories , 2010, 2010 IEEE International Symposium on Information Theory.

[20]  Lara Dolecek,et al.  The Cycle Consistency Matrix Approach to LDPC Absorbing Sets in Separable Circulant-Based Codes , 2012, ArXiv.

[21]  Haruhiko Kaneko,et al.  Error Control Coding for Multilevel Cell Flash Memories Using Nonbinary Low-Density Parity-Check Codes , 2009, 2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

[22]  Yan Li,et al.  A 16Gb 3b/ Cell NAND Flash Memory in 56nm with 8MB/s Write Rate , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[23]  Frederic Sala,et al.  Dynamic Threshold Schemes for Multi-Level Non-Volatile Memories , 2012, IEEE Transactions on Communications.

[24]  Khanh Nguyen,et al.  A 5.6MB/s 64Gb 4b/Cell NAND Flash memory in 43nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[25]  Roberto Bez,et al.  Introduction to flash memory , 2003, Proc. IEEE.

[26]  Anxiao Jiang,et al.  Error-correcting codes for rank modulation , 2008, 2008 IEEE International Symposium on Information Theory.

[27]  Paul H. Siegel,et al.  Parallel programming of rank modulation , 2013, 2013 IEEE International Symposium on Information Theory.

[28]  Arya Mazumdar,et al.  Constructions of Rank Modulation Codes , 2013, IEEE Transactions on Information Theory.

[29]  Richard D. Wesel,et al.  Soft Information for LDPC Decoding in Flash: Mutual-Information Optimized Quantization , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.