Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe

Probabilistic atlases of neuroanatomy are more representative of population anatomy than single brain atlases. They allow anatomical labeling of the results of group studies in stereotaxic space, automated anatomical labeling of individual brain imaging datasets, and the statistical assessment of normal ranges for structure volumes and extents. No such manually constructed atlas is currently available for the frequently studied group of young adults. We studied 20 normal subjects (10 women, median age 31 years) with high‐resolution magnetic resonance imaging (MRI) scanning. Images were nonuniformity corrected and reoriented along both the anterior‐posterior commissure (AC–PC) line horizontally and the midsagittal plane sagittally. Building on our previous work, we have expanded and refined existing algorithms for the subdivision of MRI datasets into anatomical structures. The resulting algorithm is presented in the Appendix . Forty‐nine structures were interactively defined as three‐dimensional volumes‐of‐interest (VOIs). The resulting 20 individual atlases were spatially transformed (normalized) into standard stereotaxic space, using SPM99 software and the MNI/ICBM 152 template. We evaluated volume data for all structures both in native space and after spatial normalization, and used the normalized superimposed atlases to create a maximum probability map in stereotaxic space, which retains quantitative information regarding inter‐subject variability. Its potential applications range from the automatic labeling of new scans to the detection of anatomical abnormalities in patients. Further data can be extracted from the atlas for the detailed analysis of individual structures. Hum. Brain Mapping 19:224–247,2003. ©2003 Wiley‐Liss,Inc.

[1]  Alan C. Evans,et al.  Quantifying variability in the planum temporale: a probability map. , 1999, Cerebral cortex.

[2]  Samantha L. Free,et al.  PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans , 2001, Nature Genetics.

[3]  D. Louis Collins,et al.  ANIMAL+INSECT: Improved Cortical Structure Segmentation , 1999, IPMI.

[4]  Karl J. Friston,et al.  MRI and PET Coregistration—A Cross Validation of Statistical Parametric Mapping and Automated Image Registration , 1997, NeuroImage.

[5]  Alan C. Evans,et al.  MRI-PET Correlation in Three Dimensions Using a Volume-of-Interest (VOI) Atlas , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  Ralph Myers,et al.  Assessment of Spatial Normalization of PET Ligand Images Using Ligand-Specific Templates , 1999, NeuroImage.

[7]  Denis Dooley,et al.  Atlas of the Human Brain. , 1971 .

[8]  Alexander Hammers,et al.  Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1‐weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry , 2003, Magnetic resonance in medicine.

[9]  A. Elster,et al.  Klippel‐Feil Syndrome: CT and MR of Acquired and Congenital Abnormalities of Cervical Spine and Cord , 1993, Journal of computer assisted tomography.

[10]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[11]  D L Hill,et al.  Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. , 1997, Medical physics.

[12]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[13]  A. Toga,et al.  Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. , 1997, Journal of computer assisted tomography.

[14]  Richard M. Leahy,et al.  Surface-based labeling of cortical anatomy using a deformable atlas , 1997, IEEE Transactions on Medical Imaging.

[15]  Alan C. Evans,et al.  An MRI-Based Probabilistic Atlas of Neuroanatomy , 1994 .

[16]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[17]  A. Toga,et al.  Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain , 1996, The Journal of Neuroscience.

[18]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  H. Duvernoy,et al.  The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI , 1997 .

[20]  John S. Duncan,et al.  MRI neuroanatomy : a new angle on the brain , 1996 .

[21]  M. Viergever,et al.  Medical image matching-a review with classification , 1993, IEEE Engineering in Medicine and Biology Magazine.

[22]  Alan C. Evans,et al.  Anatomical-Functional Correlation Using an Adjustable MRI-Based Region of Interest Atlas with Positron Emission Tomography , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[24]  T Greitz,et al.  Journal of Cerebral Blood Flow and Metabolism Accuracy and Precision of the Computerized Brain Atlas Programme for Localization and Quantification in Positron Emission Tomography , 2022 .

[25]  H. Freund,et al.  Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. , 1990, AJNR. American journal of neuroradiology.

[26]  H. Alkadhi,et al.  Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. , 1997, Brain : a journal of neurology.

[27]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[28]  Alan C. Evans,et al.  In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior‐rostral sulci: Hemispheric asymmetries, gender differences and probability maps , 1996, The Journal of comparative neurology.

[29]  John Duncan,et al.  Implementation and application of a brain template for multiple volumes of interest , 2002, Human brain mapping.

[30]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[31]  Karl J. Friston,et al.  Incorporating Prior Knowledge into Image Registration , 1997, NeuroImage.

[32]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[33]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[34]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[35]  Daniel S. O'Leary,et al.  An MRI-Based Parcellation Method for the Temporal Lobe , 2000, NeuroImage.

[36]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[37]  Alan C. Evans,et al.  Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis , 1999, The European journal of neuroscience.

[38]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[39]  L. Parsons,et al.  Location-Probability Profiles for the Mouth Region of Human Primary Motor–Sensory Cortex: Model and Validation , 2001, NeuroImage.

[40]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[41]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[42]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[43]  Leopold Liss,et al.  ATLAS OF THE HUMAN BRAIN IN SECTION , 1970 .

[44]  J. V. Van Buren,et al.  An outline atlas of the human basal ganglia with estimation of anatomical variants. , 1962, Journal of neurosurgery.

[45]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[46]  K. Niemann,et al.  One Atlas – Three Anatomies: Relationships of the Schaltenbrand and Wahren Microscopic Data , 1999, Acta Neurochirurgica.

[47]  L Lemieux,et al.  Analysis of Temporal Lobe Resections in MR Images , 1999, Epilepsia.

[48]  J. Rademacher,et al.  Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. , 2001, Brain : a journal of neurology.

[49]  F. Fazio,et al.  Matching a Computerized Brain Atlas to Multimodal Medical Images , 1997, NeuroImage.

[50]  N. Geschwind,et al.  Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. , 1985, Archives of neurology.

[51]  Jan Voogd,et al.  The human central nervous system : a synopsis and atlas , 1978 .

[52]  J M Stevens,et al.  Magnetic resonance volumetry , 1994, Neurology.

[53]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[54]  Karl J. Friston,et al.  Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains , 2001, NeuroImage.

[55]  R. Woods,et al.  Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. , 2001, Cerebral cortex.

[56]  Michael Petrides,et al.  Three-Dimensional Probabilistic Atlas of the Human Orbitofrontal Sulci in Standardized Stereotaxic Space , 2001, NeuroImage.

[57]  R. Bajcsy,et al.  Evaluation of Elastic Matching System for Anatomic (CT, MR) and Functional (PET) Cerebral Images , 1989, Journal of computer assisted tomography.

[58]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  J. Brierley,et al.  THE SIGNIFICANCE IN HUMAN STEREOTACTIC BRAIN SURGERY OF INDIVIDUAL VARIATION IN THE DIENCEPHALON AND GLOBUS PALLIDUS* , 1959, Journal of neurology, neurosurgery, and psychiatry.

[60]  John S. Duncan,et al.  Absolute PET Quantification with Correction for Partial Volume Effects within Cerebral Structures , 1998 .

[61]  R A Robb,et al.  A software system for interactive and quantitative visualization of multidimensional biomedical images. , 1991, Australasian physical & engineering sciences in medicine.

[62]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[63]  Guy Marchal,et al.  Multi-modality image registration by maximization of mutual information , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[64]  W. Bank The Human Brain. Surface, Three-Dimensional Sectional Anatomy and MRI , 1993 .

[65]  T. Greitz,et al.  Adjustable computerized stereotaxic brain atlas for transmission and emission tomography. , 1983, AJNR. American journal of neuroradiology.

[66]  J. Talairach Atlas d'anatomie stéréotaxique du télencéphale : études anatomo-radiologiques , 1967 .

[67]  Alan C. Evans,et al.  Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. , 2001, Cerebral cortex.

[68]  Vincent A Magnotta,et al.  Cerebral cortex: a topographic segmentation method using magnetic resonance imaging , 2000, Psychiatry Research: Neuroimaging.

[69]  J. Ashburner,et al.  Multimodal Image Coregistration and Partitioning—A Unified Framework , 1997, NeuroImage.

[70]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[71]  K. Niemann,et al.  The Morel Stereotactic Atlas of the Human Thalamus: Atlas-to-MR Registration of Internally Consistent Canonical Model , 2000, NeuroImage.

[72]  E. S. Watkins,et al.  A stereotaxic atlas of the human thalamus and adjacent structures : a variability study , 1969 .

[73]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[74]  J. Rapoport,et al.  Variability of human brain structure size: ages 4–20 years , 1997, Psychiatry Research: Neuroimaging.

[75]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[76]  S. L. Free,et al.  Landmark-Based Morphometrics of the Normal Adult Brain Using MRI , 2001, NeuroImage.

[77]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[78]  D R Fish,et al.  Integration of structural and functional data. , 1998, Current opinion in neurology.

[79]  N. Makris,et al.  Gyri of the human neocortex: an MRI-based analysis of volume and variance. , 1998, Cerebral cortex.

[80]  T. Greitz,et al.  A computerized brain atlas: construction, anatomical content, and some applications. , 1991, Journal of computer assisted tomography.

[81]  R. Bajcsy,et al.  A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. , 1983, Journal of computer assisted tomography.

[82]  G. Hagemann,et al.  Fast, accurate, and reproducible automatic segmentation of the brain in T1‐weighted volume MRI data , 1999, Magnetic resonance in medicine.

[83]  Alexander Hammers,et al.  Evidence of a smaller left hippocampus and left temporal horn in both patients with first episode schizophrenia and normal control subjects , 2000, Psychiatry Research: Neuroimaging.

[84]  M. Preul The Human Brain: Surface, Blood Supply, and Three-Dimensional Sectional Anatomy , 2001 .

[85]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[86]  D. V. von Cramon,et al.  Sulcal variability of twins. , 1999, Cerebral cortex.

[88]  R. Bajcsy,et al.  Technical note. Computer assisted analysis of tomographic images of the brain. , 1981, Journal of computer assisted tomography.