Transducer-Less Thermoreflectance Technique for Measuring Thermal Properties of the Buried Buffer Layer and Interface in GaN-based HEMTs

[1]  Martin Kuball,et al.  In situ Thermoreflectance Characterization of Thermal Resistance in Multilayer Electronics Packaging , 2022, ACS applied electronic materials.

[2]  Y. Hao,et al.  The Influence of Fe Doping Tail in Unintentionally Doped GaN Layer on DC and RF Performance of AlGaN/GaN HEMTs , 2021, IEEE Transactions on Electron Devices.

[3]  M. Goorsky,et al.  High thermal conductivity and thermal boundary conductance of homoepitaxially grown gallium nitride (GaN) thin films , 2021, Physical Review Materials.

[4]  Kun Du,et al.  Different Effects of Mg and Si Doping on the Thermal Transport of Gallium Nitride , 2021, Frontiers in Materials.

[5]  Y. Koh,et al.  Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance. , 2021, The Review of scientific instruments.

[6]  N. Iwata,et al.  Effect of C- and Fe-doped GaN buffer on AlGaN/GaN high electron mobility transistor performance on GaN substrate using side-gate modulation , 2021 .

[7]  S. Kamiyama,et al.  Quasi-ballistic thermal conduction in 6H–SiC , 2021, 2102.07683.

[8]  M. Uren,et al.  Impact of carbon in the buffer on power switching GaN-on-Si and RF GaN-on-SiC HEMTs , 2021 .

[9]  B. Pate,et al.  High-Resolution Thermoreflectance Imaging Investigation of Self-Heating in AlGaN/GaN HEMTs on Si, SiC, and Diamond Substrates , 2020, IEEE Transactions on Electron Devices.

[10]  J. Maria,et al.  The Doping Dependence of the Thermal Conductivity of Bulk Gallium Nitride Substrates , 2020 .

[11]  G. Pavlidis,et al.  Monitoring the Joule heating profile of GaN/SiC high electron mobility transistors via cross-sectional thermal imaging , 2020 .

[12]  Nazli Donmezer,et al.  Mean Free Path–Thermal Conductivity Accumulation Calculations for Wurtzite Gallium Nitride: Two Approaches , 2020 .

[13]  G. Pavlidis,et al.  Thermal Performance of GaN/Si HEMTs Using Near-Bandgap Thermoreflectance Imaging , 2020, IEEE Transactions on Electron Devices.

[14]  Martin Kuball,et al.  Nanosecond transient thermoreflectance method for characterizing anisotropic thermal conductivity. , 2019, The Review of scientific instruments.

[15]  D. Cherns,et al.  Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration , 2019, Communications Physics.

[16]  P. Hopkins,et al.  A steady-state thermoreflectance method to measure thermal conductivity. , 2019, The Review of scientific instruments.

[17]  S. Bank,et al.  Picosecond transient thermoreflectance for thermal conductivity characterization , 2018, Nanoscale and Microscale Thermophysical Engineering.

[18]  Martin Kuball,et al.  Above bandgap thermoreflectance for non-invasive thermal characterization of GaN-based wafers , 2018, Applied Physics Letters.

[19]  Ronggui Yang,et al.  Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials , 2018, Journal of Applied Physics.

[20]  L. Kirste,et al.  Suppression of Iron Memory Effect in GaN Epitaxial Layers , 2018 .

[21]  Ronggui Yang,et al.  Anisotropic Thermal Conductivity of 4H and 6H Silicon Carbide Measured Using Time-Domain Thermoreflectance , 2017, 1712.00830.

[22]  T. Grotjohn,et al.  Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling. , 2017, ACS applied materials & interfaces.

[23]  J. Muth,et al.  Effect of Si doping on the thermal conductivity of bulk GaN at elevated temperatures – theory and experiment , 2017 .

[24]  J. Sheu,et al.  Carrier dynamics of Mn-induced states in GaN thin films , 2017, Scientific Reports.

[25]  Theodore D. Moustakas,et al.  Thickness dependent thermal conductivity of gallium nitride , 2017 .

[26]  P. Hopkins,et al.  Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer. , 2016, The Review of scientific instruments.

[27]  Christina M. Rost,et al.  Size dictated thermal conductivity of GaN , 2016 .

[28]  Thomas L. Bougher,et al.  Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance with Robust Monte Carlo Uncertainty Estimation , 2016 .

[29]  Xianfan Xu,et al.  Assessment of Thermal Properties via Nanosecond Thermoreflectance Method , 2015 .

[30]  M. Dresselhaus,et al.  Spectral mapping of thermal conductivity through nanoscale ballistic transport. , 2015, Nature nanotechnology.

[31]  A. Shakouri,et al.  Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. , 2015, The Review of scientific instruments.

[32]  S. Gwo,et al.  Ultrafast carrier dynamics in GaN nanorods , 2014 .

[33]  Roland B. Simon,et al.  Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation , 2014 .

[34]  Brian F. Donovan,et al.  Thermal boundary conductance across metal-gallium nitride interfaces from 80 to 450 K , 2014 .

[35]  Yiyang Li,et al.  Phonon scattering in strained transition layers for GaN heteroepitaxy , 2014 .

[36]  R. Davis,et al.  Universal phonon mean free path spectra in crystalline semiconductors at high temperature , 2013, Scientific Reports.

[37]  Yan Peng,et al.  Thermal conductivity of 4H-SiC single crystals , 2013 .

[38]  D. Tang,et al.  Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films , 2010 .

[39]  Martin Kuball,et al.  Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure , 2010, IEEE Electron Device Letters.

[40]  W. E. Hoke,et al.  AlGaN/GaN HEMT With 300-GHz $f_{\max}$ , 2010, IEEE Electron Device Letters.

[41]  Umesh K. Mishra,et al.  GaN-Based RF Power Devices and Amplifiers , 2008, Proceedings of the IEEE.

[42]  Hangfeng Ji,et al.  Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices , 2007, IEEE Transactions on Electron Devices.

[43]  Seikoh Yoshida,et al.  C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE , 2007 .

[44]  S. Keller,et al.  High-power AlGaN/GaN HEMTs for Ka-band applications , 2005, IEEE Electron Device Letters.

[45]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[46]  Xueping Xu,et al.  Characteristics of semi-insulating, Fe-doped GaN substrates , 2003 .

[47]  G. Simin,et al.  AlGaN/GaN HEMTs on SiC with f/sub T/ of over 120 GHz , 2002, IEEE Electron Device Letters.

[48]  A. Sabbah,et al.  Femtosecond Pump-Probe Reflectivity Study of Silicon Carrier Dynamics , 2002 .

[49]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[50]  K. Goodson,et al.  Thermal characterization of Bi2Te3/Sb2Te3 superlattices , 2001 .

[51]  S. Denbaars,et al.  Studies of carrier dynamics in unintentionally doped gallium nitride bandtail states , 2001 .

[52]  C. T. Foxon,et al.  Energy relaxation by hot electrons in n-GaN epilayers , 2001 .

[53]  A. Sabbah,et al.  Measurement of silicon surface recombination velocity using ultrafast pump–probe reflectivity in the near infrared , 2000 .

[54]  J. B. Webb,et al.  Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy , 1999 .

[55]  Gary W. Wicks,et al.  Hot electron relaxation time in GaN , 1999 .

[56]  John F. Muth,et al.  Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .

[57]  Takayuki Tanaka,et al.  Subpicosecond surface-restricted carrier and thermal dynamics by transient reflectivity measurements , 1997 .

[58]  Yoichi Takahashi,et al.  Heat capacity of gold from 80 to 1000 K , 1986 .