Treewidth-based conditions for exactness of the Sherali-Adams and Lasserre relaxations
暂无分享,去创建一个
[1] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[2] Claude Berge,et al. Graphs and Hypergraphs , 2021, Clustering.
[3] Hanif D. Sherali,et al. A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..
[4] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[5] Hans L. Bodlaender,et al. A Tourist Guide through Treewidth , 1993, Acta Cybern..
[6] Steffen L. Lauritzen,et al. Graphical models in R , 1996 .
[7] Tamon Stephen,et al. On a Representation of the Matching Polytope Via Semidefinite Liftings , 1999, Math. Oper. Res..
[8] Michael I. Jordan,et al. Probabilistic Networks and Expert Systems , 1999 .
[9] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[10] Jean B. Lasserre,et al. An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..
[11] Monique Laurent,et al. A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..
[12] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[13] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[14] Martin J. Wainwright,et al. LP Decoding Corrects a Constant Fraction of Errors , 2004, IEEE Transactions on Information Theory.
[15] Monique Laurent,et al. Semidefinite Relaxations for Max-Cut , 2004, The Sharpest Cut.
[16] Martin J. Wainwright,et al. Using linear programming to Decode Binary linear codes , 2005, IEEE Transactions on Information Theory.