Spawning habitat of Atlantic salmon and brown trout: general criteria and intragravel factors

Generalized habitat criteria for spawning sites of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) using depth, water velocity and substrate size were created based on published information. In addition, information on critical intragravel conditions for egg development was summarized. Salmon spawned mostly in relatively deep, swift-velocity habitats (20–50 cm, 35–65 cm s−1), whereas trout selected slightly shallower and slower flowing spawning sites (15–45 cm, 20–55 cm s−1). Salmon and trout preferred pebbles (16–64 mm) for spawning. The minimum oxygen concentration for successful incubation of eggs varies with the developmental stage of eggs, and supply of it may be reduced by deposited fine sediment. Habitat criteria for spawning sites are narrower than those for small juveniles; therefore the use of separate criteria is recommended. In addition to the traditional habitat criteria variables (depth, water velocity, substrate), the critical intragravel factors affecting egg survival should be incorporated in biologically meaningful criteria for spawning habitat modelling. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  G. Kondolf,et al.  Assessing Salmonid Spawning Gravel Quality , 2000 .

[2]  Stanislas J. Pauwels,et al.  Survival, Hatching, and Emergence Success of Atlantic Salmon Eggs Planted in Three Maine Streams , 1994 .

[3]  D. T. Crisp,et al.  Environmental requirements of common riverine European salmonid fish species in fresh water with particular reference to physical and chemical aspects , 1996, Hydrobiologia.

[4]  M. Lapointe,et al.  Interactive effects of substrate sand and silt contents, redd-scale hydraulic gradients, and interstitial velocities on egg-to-emergence survival of Atlantic salmon (Salmo salar) , 2004 .

[5]  J. Rubin,et al.  Egg‐to‐fry survival of the sea trout in some streams of Gotland , 1996 .

[6]  David A. Sear,et al.  Fine sediment infiltration into gravel spawning beds within a regulated river experiencing floods: Ecological implications for salmonids , 1993 .

[7]  T. G. Heggberget,et al.  Temporal and spatial segregation of spawning in sympatric populations of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L. , 1988 .

[8]  Chris Soulsby,et al.  PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: testing the influence of habitat suitability indices on model output , 2005 .

[9]  A. Clarke,et al.  Observations on the structure of brown trout, Salmo trutta Linnaeus, redds , 1981 .

[10]  K. Beland,et al.  Water Depth and Velocity Preferences of Spawning Atlantic Salmon in Maine Rivers , 1982 .

[11]  T. E. Andrew,et al.  The effects of siltation on Atlantic salmon, Salmo salar L., embryos in the River Bush , 1998 .

[12]  D. Milan,et al.  Regional variations in the sediment structure of trout streams in southern England: benchmark data for siltation assessment and restoration , 2000 .

[13]  T. Olsson,et al.  Effects of gravel size and peat material concentrations on embryo survival and alevin emergence of brown trout, Salmo trutta L. , 1986, Hydrobiologia.

[14]  C. Soulsby,et al.  Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. , 2001, The Science of the total environment.

[15]  John C. Davis Minimal Dissolved Oxygen Requirements of Aquatic Life with Emphasis on Canadian Species: a Review , 1975 .

[16]  R. J. Gibson The effects of fluvial processes and habitat heterogeneity on distribution, growth and densities of juvenile Atlantic salmon (Salmo salar L.), with consequences on abundance of the adult fish , 2002 .

[17]  R. J. Gibson The Atlantic salmon in fresh water: spawning, rearing and production , 1993, Reviews in Fish Biology and Fisheries.

[18]  J. Heggenes,et al.  HABITAT SELECTION BY BROWN TROUT (SALMO TRUTTA) AND YOUNG ATLANTIC SALMON (S. SALAR) IN STREAMS: STATIC AND DYNAMIC HYDRAULIC MODELLING , 1996 .

[19]  T. G. Heggberget,et al.  Incubation of Eggs of Atlantic Salmon (Salmo Salar) from Different Norwegian Streams at Temperatures below 1 °C , 1988 .

[20]  C. S. Shirvell Ability of phabsim to predict chinook salmon spawning habitat , 1989 .

[21]  J.-F. Rubin Survival and emergence pattern of sea trout fry in substrata of different compositions , 1998 .

[22]  T. C. Bjornn,et al.  A New Method of Relating Size of Spawning Gravel to Salmonid Embryo Survival , 1983 .

[23]  D. Crisp Trout and Salmon: Ecology, Conservation and Rehabilitation: Crisp/Trout , 2008 .

[24]  C. Gibbins,et al.  Linking channel geomorphic characteristics to spatial patterns of spawning activity and discharge use by Atlantic salmon (Salmo salar L.) , 2004 .

[25]  C. Soulsby,et al.  Hydraulic and sedimentary controls on the availability and use of Atlantic salmon (Salmo salar) spawning habitat in the River Dee system, north-east Scotland , 2002 .

[26]  A. Huusko,et al.  Effects of instream enhancement structures on brown trout, Salmo trutta L., habitat availability in a channelized boreal river: a PHABSIM approach , 1997 .

[27]  Ari Huusko,et al.  Transferability of habitat suitability criteria of juvenile Atlantic salmon (Salmo salar) , 2002 .

[28]  R. Raleigh,et al.  Habitat Suitability Index models and Instream Flow Suitability curves: brown trout , 1984 .

[29]  D. T. Crisp,et al.  Observations on siting, dimensions and structure of salmonid redds , 1989 .

[30]  Michael Power,et al.  Brown trout spawning habitat selection preferences and redd characteristics in the Credit River, Ontario , 2006 .

[31]  M. Sale,et al.  Distribution and Stability of Potential Salmonid Spawning Gravels in Steep Boulder-Bed Streams of the Eastern Sierra Nevada , 1991 .

[32]  C. S. Shirvell,et al.  Microhabitats Chosen by Brown Trout for Feeding and Spawning in Rivers , 1983 .

[33]  G. Petts,et al.  Changing river channels , 1996 .

[34]  P. Diplas,et al.  Vorticity and circulation: spatial metrics for evaluating flow complexity in stream habitats , 2002 .

[35]  J. Meyer,et al.  Standards for ecologically successful river restoration , 2005 .

[36]  Thomas E. Lisle,et al.  Sediment Transport and Resulting Deposition in Spawning Gravels, North Coastal California , 1989 .

[37]  C. Soulsby,et al.  Hydraulic and sedimentary characteristics of habitat utilized by Atlantic salmon for spawning in the Girnock Burn, Scotland , 1998 .

[38]  M. Lapointe,et al.  Channel morphology and lateral stability: effects on distribution of spawning and rearing habitat for Atlantic salmon in a wandering cobble-bed river , 1997 .

[39]  M. Leclerc,et al.  NUMERICAL METHOD FOR MODELLING SPAWNING HABITAT DYNAMICS OF LANDLOCKED SALMON, SALMO SALAR , 1996 .

[40]  Paul S. Kemp,et al.  Habitat requirements of Atlantic salmon and brown trout in rivers and streams , 2003 .

[41]  D. Sear,et al.  Impact of clay particles on the cutaneous exchange of oxygen across the chorion of Atlantic salmon eggs , 2005 .

[42]  Charles F. Rabeni,et al.  Integrating biological realism into habitat restoration and conservation strategies for small streams , 1996 .

[43]  P. S. Lake,et al.  Local habitat restoration in streams: Constraints on the effectiveness of restoration for stream biota , 2003 .

[44]  F. Lepori,et al.  DOES RESTORATION OF STRUCTURAL HETEROGENEITY IN STREAMS ENHANCE FISH AND MACROINVERTEBRATE DIVERSITY , 2005 .

[45]  Arne Lindroth Sauerstoffverbrauch der Fische. II. Verschiedene Entwicklungs und Altersstadien vom lachs und Hecht , 1942, Zeitschrift für vergleichende Physiologie.

[46]  G. Mathias Kondolf,et al.  The sizes of salmonid spawning gravels , 1993 .

[47]  E. Beall,et al.  Nest Placement and Egg Distribution in Atlantic Salmon Redds , 2004, Environmental Biology of Fishes.

[48]  Allan K. Smith Development and Application of Spawning Velocity and Depth Criteria for Oregon Salmonids , 1973 .

[49]  Peter Calow,et al.  The Rivers Handbook , 1993 .

[50]  F. R. Hayes,et al.  The oxygen consumption of the salmon egg in relation to development and activity. , 1951, The Journal of experimental zoology.

[51]  R. Beschta,et al.  Fine sediment and salmonid production: a paradox , 1987 .

[52]  N. Bergeron,et al.  Effect of Fine Sediment Infiltration During the Incubation Period on Atlantic Salmon (Salmo salar) Embryo Survival , 2006, Hydrobiologia.

[53]  A. Bardonnet,et al.  Freshwater habitat of Atlantic salmon (Salmo salar) , 2000 .

[54]  A. N. Strahler Hypsometric (area-altitude) analysis of erosional topography. , 1952 .

[55]  Mark Gard,et al.  Modeling changes in salmon spawning and rearing habitat associated with river channel restoration , 2006 .

[56]  M. Lapointe,et al.  Effects of silt and very fine sand dynamics in Atlantic salmon (Salmo salar) redds on embryo hatching success , 2006 .

[57]  T. C. Bjornn Habitat requirements of salmonids in streams , 1991 .

[58]  Hugh R. MacCrimmon,et al.  Embryo survival and alevin emergence of brook charr, Salvelinus fontinalis and brown trout, Salmo trutta, relative to redd gravel composition , 1983 .

[59]  D. W. Chapman,et al.  Critical Review of Variables Used to Define Effects of Fines in Redds of Large Salmonids , 1988 .

[60]  Hugh R. MacCrimmon,et al.  Redd-site selection by brook trout and brown trout in southwestern Ontario streams , 1983 .

[61]  T. Beard,et al.  Influence of Spawning and Other Stream Habitat Features on Spatial Variability of Wild Brown Trout , 1991 .

[62]  Peter W. Sorensen,et al.  High rate of redd superimposition by brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) in a Minnesota stream cannot be explained by habitat availability alone , 1998 .