Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm

Harmony search (HS) is a meta-heuristic method that has been applied widely to continuous optimization problems. In this study, a new binary coded version of HS, named NBHS, is developed for solving large-scale multidimensional knapsack problem (MKP). In the proposed method, focus is given to the probability distribution rather than the exact value of each decision variable and the concept of mean harmony is introduced in the memory consideration. Unlike the existing HS variants which require specifications of parameters such as the pitch adjustment rate and step bandwidth, an ingenious pitch adjustment scheme without parameter specification is executed in the proposed HS according to the difference between two randomly selected harmonies stored in the harmony memory to generate a new candidate harmony. Moreover, to guarantee the availability of harmonies in the harmony memory, a simple but effective repair operator derived from specific heuristic knowledge of the MKP is embedded in the proposed method. Finally, extensive numerical simulations are conducted on two sets of large-scale benchmark problems, and the results reveal that the proposed method is robust and effective for solving the multidimensional knapsack problems with large dimension sizes. HighlightsThe framework of HS is restructured for 0-1 optimization problems.The probability distribution is focused instead of the exact variable value.An ingenious pitch adjustment scheme without parameter specification is executed.A simple but effective repair operator derived from specific heuristic knowledge.This proposed NBHS is robust and effective for solving large-scale MKPs.

[1]  Ye Xu,et al.  An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem , 2012, Expert Syst. Appl..

[2]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[3]  M. Jaberipour,et al.  Harmony search algorithm for solving combined heat and power economic dispatch problems , 2011 .

[4]  Zong Woo Geem,et al.  Novel derivative of harmony search algorithm for discrete design variables , 2008, Appl. Math. Comput..

[5]  Jun Zhang,et al.  A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems , 2010, IEEE Transactions on Evolutionary Computation.

[6]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[7]  Hasan Pirkul,et al.  A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .

[8]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[9]  Minrui Fei,et al.  A Discrete Harmony Search Algorithm , 2010 .

[10]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[11]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[12]  Alireza Rezazadeh,et al.  An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model , 2012, IEEE Transactions on Industrial Electronics.

[13]  Abdesslem Layeb,et al.  A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems , 2013, J. Comput. Appl. Math..

[14]  Lale Özbakir,et al.  Training neural networks with harmony search algorithms for classification problems , 2012, Eng. Appl. Artif. Intell..

[15]  Yong-Hyuk Kim,et al.  A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem , 2012, Eur. J. Oper. Res..

[16]  Stelios H. Zanakis,et al.  Heuristic 0-1 Linear Programming: An Experimental Comparison of Three Methods , 1977 .

[17]  Dimitris Bertsimas,et al.  An Approximate Dynamic Programming Approach to Multidimensional Knapsack Problems , 2002, Manag. Sci..

[18]  Quan-Ke Pan,et al.  Discrete harmony search algorithm for the no-wait flow shop scheduling problem with total flow time criterion , 2011 .

[19]  Jianhua Wu,et al.  An effective global harmony search algorithm for reliability problems , 2011, Expert Syst. Appl..

[20]  Michel Vasquez,et al.  Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem , 2008, J. Comb. Optim..

[21]  Stephen C. H. Leung,et al.  A hybrid simulated annealing metaheuristic algorithm for the two-dimensional knapsack packing problem , 2012, Comput. Oper. Res..

[22]  Yourim Yoon,et al.  Two applications of clustering techniques to Twitter: Community detection and issue extraction , 2013 .

[23]  Mandava Rajeswari,et al.  The variants of the harmony search algorithm: an overview , 2011, Artificial Intelligence Review.

[24]  Jiadong Yang,et al.  A hybrid harmony search algorithm for the flexible job shop scheduling problem , 2013, Appl. Soft Comput..

[25]  M. Raju,et al.  Optimal Network Reconfiguration of Large-Scale Distribution System Using Harmony Search Algorithm , 2011, IEEE Transactions on Power Systems.

[26]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[27]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[28]  Jianhua Wu,et al.  Solving 0-1 knapsack problem by a novel global harmony search algorithm , 2011, Appl. Soft Comput..

[29]  Yourim Yoon,et al.  A Memetic Lagrangian Heuristic for the 0-1 MultidimensionalKnapsack Problem , 2013 .

[30]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[31]  Susan H. Xu,et al.  Greedy algorithm for the general multidimensional knapsack problem , 2007, Ann. Oper. Res..

[32]  Zong Woo Geem,et al.  Harmony Search in Water Pump Switching Problem , 2005, ICNC.

[33]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[34]  M. P. Saka,et al.  Adaptive Harmony Search Method for Structural Optimization , 2010 .

[35]  Panos M. Pardalos,et al.  An improved adaptive binary Harmony Search algorithm , 2013, Inf. Sci..

[36]  Dexuan Zou,et al.  A novel global harmony search algorithm for reliability problems , 2010, Comput. Ind. Eng..

[37]  Leandro dos Santos Coelho,et al.  An improved harmony search algorithm for power economic load dispatch , 2009 .

[38]  Yun-Chia Liang,et al.  Solving the multidimensional knapsack problems with generalized upper bound constraints by the adaptive memory projection method , 2012, Comput. Oper. Res..

[39]  Panos M. Pardalos,et al.  An adaptive fuzzy controller based on harmony search and its application to power plant control , 2013 .

[40]  A. Kaveh,et al.  Discrete cost optimization of composite floor system using social harmony search model , 2012, Appl. Soft Comput..

[41]  Raymond R. Hill,et al.  Problem reduction heuristic for the 0-1 multidimensional knapsack problem , 2012, Comput. Oper. Res..

[42]  Jerzy Kotowski,et al.  Analysis of the Properties of the Harmony Search Algorithm Carried Out on the One Dimensional Binary Knapsack Problem , 2009, EUROCAST.

[43]  Hasan Pirkul,et al.  EFFICIENT ALGORITHMS FOR THE MULTICONSTRAINT GENERAL KNAPSACK PROBLEM. , 1986 .

[44]  Didier El Baz,et al.  Heuristics for the 0-1 multidimensional knapsack problem , 2009, Eur. J. Oper. Res..

[45]  M. Rashidinejad,et al.  An implementation of harmony search algorithm to unit commitment problem , 2010 .

[46]  K. Lee,et al.  The harmony search heuristic algorithm for discrete structural optimization , 2005 .