Challenges of Dynamic Multi-objective Optimisation

Dynamic multi-objective optimisation (DMOO) entails solving optimisation problems with more than one objective, where at least one objective changes over time. Normally at least two of the objectives are in conflict with one another. Therefore, a single solution does not exist and the goal of an algorithm is to find for each environment a set of solutions that are both diverse and as close as possible to the optimal trade-off solution set. Solving dynamic multi-objective optimisation problems (DMOOPs) is not a trivial task, since the field of DMOO has many challenges. This paper highlights these challenges, namely the selection of benchmark functions and performance measures, the analyses of obtained results and selecting a preferred solution from the set of trade-off solutions. In addition, this paper discusses emerging research areas within computational intelligence (CI), such as hyper-heuristics, constrained optimisation, many-objective optimisation, self-adapting algorithms and formal analysis of fitness landscapes, highlighting research areas within the field of DMOO that should be addressed in future work.

[1]  Xi Chen,et al.  Using Diversity as an Additional-objective in Dynamic Multi-objective Optimization Algorithms , 2009, 2009 Second International Symposium on Electronic Commerce and Security.

[2]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Shengxiang Yang,et al.  Explicit Memory Schemes for Evolutionary Algorithms in Dynamic Environments , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[4]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[5]  Zbigniew Michalewicz,et al.  Test-case generator for nonlinear continuous parameter optimization techniques , 2000, IEEE Trans. Evol. Comput..

[6]  Carlos A. Coello Coello,et al.  Multi-Objective Optimization using Differential Evolution : A Survey of the State-ofthe-Art , 2008 .

[7]  Rolf Drechsler,et al.  Robust Multi-Objective Optimization in High Dimensional Spaces , 2007, EMO.

[8]  Haiyan Lu,et al.  Dynamic-objective particle swarm optimization for constrained optimization problems , 2006, J. Comb. Optim..

[9]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[10]  Xin Yao,et al.  Benchmark Generator for CEC'2009 Competition on Dynamic Optimization , 2008 .

[11]  Andries Petrus Engelbrecht,et al.  Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[12]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[13]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[14]  Kiyoshi Tanaka,et al.  Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs , 2007, EMO.

[15]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[18]  Tim Blackwell,et al.  Particle Swarm Optimization in Dynamic Environments , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[19]  Hartmut Schmeck,et al.  Designing evolutionary algorithms for dynamic optimization problems , 2003 .

[20]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[21]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[22]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[23]  Galina Merkuryeva,et al.  Simulation-Based Analysis of Fitness Landscape in Optimisation , 2009, Sci. J. Riga Tech. Univ. Ser. Comput. Sci..

[24]  Shengxiang Yang,et al.  A hybrid immigrants scheme for genetic algorithms in dynamic environments , 2007, Int. J. Autom. Comput..

[25]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[26]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[27]  Tapabrata Ray,et al.  Constrained many-objective optimization: A way forward , 2009, 2009 IEEE Congress on Evolutionary Computation.

[28]  Bojin Zheng,et al.  A New Dynamic Multi-objective Optimization Evolutionary Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[29]  Bin Li,et al.  Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization , 2010, Memetic Comput..

[30]  E. Soubeiga,et al.  Multi-Objective Hyper-Heuristic Approaches for Space Allocation and Timetabling , 2005 .

[31]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[32]  S. N. Omkar,et al.  Applied Soft Computing Artificial Bee Colony (abc) for Multi-objective Design Optimization of Composite Structures , 2022 .

[33]  Carlos A. Coello Coello,et al.  Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art , 2008 .

[34]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[35]  Alireza Rahimi-Vahed,et al.  A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem , 2007, Comput. Ind. Eng..

[36]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[37]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[38]  Andries Petrus Engelbrecht,et al.  Dynamic Multi-Objective Optimization Using PSO , 2013, Metaheuristics for Dynamic Optimization.

[39]  Fang Liu,et al.  A sphere-dominance based preference immune-inspired algorithm for dynamic multi-objective optimization , 2010, GECCO '10.

[40]  Mario Cámara Sola,et al.  Parallel processing for dynamic multi-objetive optimization , 2010 .

[41]  Marde Helbig,et al.  Solving dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2012 .

[42]  Reza Akbari,et al.  A multi-objective Artificial Bee Colony for optimizing multi-objective problems , 2010, 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE).

[43]  Maximino Salazar Lechuga,et al.  Multi-objective optimisation using sharing in swarm optimisation algorithms , 2009 .

[44]  Mehmet Fatih Tasgetiren,et al.  Multi-objective optimization based on self-adaptive differential evolution algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[45]  Gary G. Yen,et al.  A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[46]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[47]  Q. Henry Wu,et al.  Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[48]  Quan-Ke Pan,et al.  Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems , 2011 .

[49]  Xiaodong Li,et al.  Using a distance metric to guide PSO algorithms for many-objective optimization , 2009, GECCO.

[50]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[51]  Agostinho C. Rosa,et al.  A self-organized criticality mutation operator for dynamic optimization problems , 2008, GECCO '08.

[52]  Bin Li,et al.  Multi-strategy ensemble particle swarm optimization for dynamic optimization , 2008, Inf. Sci..

[53]  Andries P. Engelbrecht,et al.  Analysing the performance of dynamic multi-objective optimisation algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[54]  Jouni Lampinen,et al.  Ranking-Dominance and Many-Objective Optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[55]  Jürgen Branke,et al.  Multi-swarm Optimization in Dynamic Environments , 2004, EvoWorkshops.

[56]  Sébastien Vérel,et al.  ParadisEO-MO: from fitness landscape analysis to efficient local search algorithms , 2013, Journal of Heuristics.

[57]  Arvind S. Mohais,et al.  DynDE: a differential evolution for dynamic optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[58]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[59]  Julio Ortega Lopera,et al.  Parallel Processing for Multi-objective Optimization in Dynamic Environments , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[60]  Xiaodong Li,et al.  Particle Swarms for Dynamic Optimization Problems , 2008, Swarm Intelligence.

[61]  Shengxiang Yang,et al.  Memory-based immigrants for genetic algorithms in dynamic environments , 2005, GECCO '05.

[62]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[63]  Frederico G. Guimarães,et al.  Overview of Artificial Immune Systems for Multi-objective Optimization , 2007, EMO.

[64]  Andries Petrus Engelbrecht,et al.  A survey of techniques for characterising fitness landscapes and some possible ways forward , 2013, Inf. Sci..

[65]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[66]  Mario Köppen,et al.  Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems , 2007, EMO.

[67]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[68]  Mohammad Reza Meybodi,et al.  Speciation based firefly algorithm for optimization in dynamic environments , 2012 .

[69]  Rasmus K. Ursem,et al.  Multinational GAs: Multimodal Optimization Techniques in Dynamic Environments , 2000, GECCO.

[70]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[71]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[72]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[73]  Kevin E Lansey,et al.  Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm , 2003 .

[74]  V. S. Summanwar,et al.  Solution of constrained optimization problems by multi-objective genetic algorithm , 2002 .

[75]  Yuren Zhou,et al.  Multi-objective and MGG evolutionary algorithm for constrained optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[76]  Andries Petrus Engelbrecht,et al.  Performance measures for dynamic multi-objective optimisation algorithms , 2013, Inf. Sci..

[77]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[78]  A. Sima Etaner-Uyar,et al.  An Investigation of Selection Hyper-heuristics in Dynamic Environments , 2011, EvoApplications.

[79]  Janez Brest,et al.  Dynamic optimization using Self-Adaptive Differential Evolution , 2009, 2009 IEEE Congress on Evolutionary Computation.

[80]  Andries Petrus Engelbrecht,et al.  Issues with performance measures for dynamic multi-objective optimisation , 2013, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[81]  Zikrija Avdagic,et al.  Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems , 2009, Foundations of Computational Intelligence.

[82]  Yaonan Wang,et al.  Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure , 2010, Soft Comput..

[83]  Peter J. Fleming,et al.  Diversity Management in Evolutionary Many-Objective Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[84]  Andries Petrus Engelbrecht,et al.  Benchmarks for dynamic multi-objective optimisation , 2013, 2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[85]  Kalyanmoy Deb,et al.  Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling , 2007, EMO.

[86]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[87]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..