A Review of 5G Power Amplifier Design at cm-Wave and mm-Wave Frequencies

The 5G wireless revolution presents some dramatic challenges to the design of handsets and communication infrastructures, as 5G targets higher than 10 Gbps download speed using millimeter-wave (mm-Wave) spectrum with multiple-input multiple-output (MIMO) antennas, connecting densely deployed wireless devices for Internet-of-Everything (IoE), and very small latency time for ultrareliable machine type communication, etc. The broadband modulation bandwidth for 5G RF transmitters (i.e., maximum possibly even above 1 GHz) demands high-power efficiency and stringent linearity from its power amplifier (PA). Additionally, the phased-array MIMO antennas with numerous RF front-ends (RFFEs) will require unprecedented high integration level with low cost, making the design of 5G PA one of the most challenging tasks. As the centimeter-wave (cm-Wave) 5G systems will probably be deployed on the market earlier than their mm-Wave counterparts, we will review in this paper the latest development on 15 GHz and 28 GHz 5G cm-Wave PAs extensively, while also covering some key mm-Wave PAs in the literature. Our review will focus on the available options of device technologies, novel circuit and system architectures, and efficiency enhancement techniques at power back-off for 5G PA design.

[1]  Sataporn Pornpromlikit,et al.  A CMOS 45 GHz power amplifier with output power > 600 mW using spatial power combining , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[2]  Keigo Nakatani,et al.  Highly integrated RF frontend module for high SHF wide-band massive MIMO in 5G, and switching-mode amplifiers beyond 4G , 2017, 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).

[3]  Harish Krishnaswamy,et al.  Large-Scale Power Combining and Mixed-Signal Linearizing Architectures for Watt-Class mmWave CMOS Power Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[4]  Keigo Nakatani,et al.  A highly integrated RF frontend module including Doherty PA, LNA and switch for high SHF wide-band massive MIMO in 5G , 2017, 2017 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR).

[5]  Mark Yeck,et al.  7.2 A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[6]  Jinho Jeong,et al.  A Watt-Level Stacked-FET Linear Power Amplifier in Silicon-on-Insulator CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.

[7]  Yan Li,et al.  High-Efficiency Silicon-Based Envelope-Tracking Power Amplifier Design With Envelope Shaping for Broadband Wireless Applications , 2013, IEEE Journal of Solid-State Circuits.

[8]  Tomoya Kaneko,et al.  GaN HEMT high efficiency power amplifiers for 4G/5G mobile communication base stations , 2014, 2014 Asia-Pacific Microwave Conference.

[9]  Peter M. Asbeck,et al.  Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[10]  James F. Buckwalter,et al.  A PMOS mm-wave power amplifier at 77 GHz with 90 mW output power and 24% efficiency , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[11]  Zoya Popovic,et al.  Amping Up the PA for 5G: Efficient GaN Power Amplifiers with Dynamic Supplies , 2017, IEEE Microwave Magazine.

[12]  Gin-Kou Ma,et al.  Design of Highly Efficient Wideband RF Polar Transmitters Using the Envelope-Tracking Technique , 2009, IEEE Journal of Solid-State Circuits.

[13]  Gabriel M. Rebeiz,et al.  Transmission of Signals With Complex Constellations Using Millimeter-Wave Spatially Power-Combined CMOS Power Amplifiers and Digital Predistortion , 2015, IEEE Transactions on Microwave Theory and Techniques.

[14]  Masaru Sato,et al.  3.6 W/mm high power density W-band InAlGaN/GaN HEMT MMIC power amplifier , 2016, 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR).

[15]  James J. Komiak,et al.  Microwave and millimeter wave power amplifiers: Technology, applications, benchmarks, future trends , 2016, 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[16]  A. Grebennikov,et al.  A Dual-Band Parallel Doherty Power Amplifier for Wireless Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[17]  D. Y. C. Lie,et al.  A highly efficient and linear 15 GHz GaN power amplifier design for 5G communications , 2017, 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS).

[18]  S. M. Alavi,et al.  All-Digital I/Q RF-DAC , 2014 .

[19]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[20]  Sherif Shakib,et al.  20.6 A 28GHz efficient linear power amplifier for 5G phased arrays in 28nm bulk CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[21]  Hongyu Zhou,et al.  A Fully Integrated Ka-Band Front End for 5G Transceiver , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[22]  J. Lopez,et al.  High-efficiency silicon RF power amplifier design – current status and future outlook , 2016, 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[23]  Robert Bogdan Staszewski,et al.  A Wideband 2$\times$ 13-bit All-Digital I/Q RF-DAC , 2014, IEEE Transactions on Microwave Theory and Techniques.

[24]  Peter Asbeck,et al.  15 GHz 25 dBm multigate-cell stacked CMOS power amplifier with 32 % PAE and ≥ 30 dB gain for 5G applications , 2016, 2016 11th European Microwave Integrated Circuits Conference (EuMIC).

[25]  J. Lopez,et al.  A short survey on recent highly efficient cm-Wave 5G linear power amplifier design , 2017, 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS).

[26]  Yan Li,et al.  Recent progress on high-efficiency CMOS and SiGe RF power amplifier design , 2016, 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR).

[27]  Yan Li,et al.  A SiGe Envelope-Tracking Power Amplifier With an Integrated CMOS Envelope Modulator for Mobile WiMAX/3GPP LTE Transmitters , 2011, IEEE Transactions on Microwave Theory and Techniques.

[28]  Zoya Popovic,et al.  ET Comes of Age: Envelope Tracking for Higher-Efficiency Power Amplifiers , 2016, IEEE Microwave Magazine.

[29]  Zoya Popovic,et al.  GaN power amplifiers with supply modulation , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[30]  Navrati Saxena,et al.  Next Generation 5G Wireless Networks: A Comprehensive Survey , 2016, IEEE Communications Surveys & Tutorials.

[31]  P. M. Asbeck,et al.  Linear operation of high-power millimeter-wave stacked-FET PAs in CMOS SOI , 2012, 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS).

[32]  Fei Wang,et al.  2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[33]  H. Vincent Poor,et al.  Application of Non-Orthogonal Multiple Access in LTE and 5G Networks , 2015, IEEE Communications Magazine.

[34]  Sherif Shakib,et al.  A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[35]  Fabio Filicori,et al.  Envelope Tracking of an RF High Power Amplifier With an 8-Level Digitally Controlled GaN-on-Si Supply Modulator , 2015, IEEE Transactions on Microwave Theory and Techniques.

[36]  A. K. Ezzeddine,et al.  The high voltage/high power FET (HiVP) , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[37]  Sasha N. Oster,et al.  Ultra-thin dual polarized millimeter-wave phased array system-in-package with embedded transceiver chip , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[38]  Yan Li,et al.  A highly integrated multiband LTE SiGe power amplifier for envelope tracking , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[39]  Chao Lu,et al.  A 24.7dBm all-digital RF transmitter for multimode broadband applications in 40nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.