Complexin Has Opposite Effects on Two Modes of Synaptic Vesicle Fusion

[1]  Shigeki Watanabe,et al.  Complexin Maintains Vesicles in the Primed State in C. elegans , 2011, Current Biology.

[2]  J. Troy Littleton,et al.  Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release , 2010, Molecular and Cellular Neuroscience.

[3]  J. Rizo,et al.  Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity , 2010, Nature Structural &Molecular Biology.

[4]  Y. Shin,et al.  Accessory alpha-helix of complexin I can displace VAMP2 locally in the complexin-SNARE quaternary complex. , 2010, Journal of molecular biology.

[5]  Hugo J. Bellen,et al.  Tilting the Balance between Facilitatory and Inhibitory Functions of Mammalian and Drosophila Complexins Orchestrates Synaptic Vesicle Exocytosis , 2009, Neuron.

[6]  A. Bonni,et al.  A Cdc20-APC Ubiquitin Signaling Pathway Regulates Presynaptic Differentiation , 2009, Science.

[7]  J. Malsam,et al.  A role of complexin–lipid interactions in membrane fusion , 2009, FEBS letters.

[8]  E. Jorgensen,et al.  Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction , 2009, Proceedings of the National Academy of Sciences.

[9]  J. Malsam,et al.  The carboxy-terminal domain of complexin I stimulates liposome fusion , 2009, Proceedings of the National Academy of Sciences.

[10]  T. Südhof,et al.  Complexin Controls the Force Transfer from SNARE Complexes to Membranes in Fusion , 2009, Science.

[11]  J. Rothman,et al.  Alternative Zippering as an On-Off Switch for SNARE-Mediated Fusion , 2009, Science.

[12]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[13]  E. Chapman,et al.  Concurrent Binding of Complexin and Synaptotagmin to Liposome-Embedded SNARE Complexes† , 2009, Biochemistry.

[14]  J. Kaplan,et al.  Behavioral Impact of Neurotransmitter-Activated G-Protein-Coupled Receptors: Muscarinic and GABAB Receptors Regulate Caenorhabditis elegans Locomotion , 2008, The Journal of Neuroscience.

[15]  T. Ha,et al.  Complexin and Ca2+ stimulate SNARE-mediated membrane fusion , 2008, Nature Structural &Molecular Biology.

[16]  Christian Rosenmund,et al.  Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system , 2008, Proceedings of the National Academy of Sciences.

[17]  Michael Dybbs,et al.  An RNAi Screen Identifies Genes that Regulate GABA Synapses , 2008, Neuron.

[18]  R. Heidelberger Mechanisms of tonic, graded release: lessons from the vertebrate photoreceptor , 2007, The Journal of physiology.

[19]  J. Littleton,et al.  A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth , 2007, Nature Neuroscience.

[20]  Wei R. Chen,et al.  The olfactory granule cell: From classical enigma to central role in olfactory processing , 2007, Brain Research Reviews.

[21]  Nils Brose,et al.  Distinct domains of Complexin I differentially regulate neurotransmitter release , 2007, Nature Structural &Molecular Biology.

[22]  T. Melia Putting the clamps on membrane fusion: How complexin sets the stage for calcium‐mediated exocytosis , 2007, FEBS letters.

[23]  Thomas C. Südhof,et al.  A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis , 2006, Cell.

[24]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[25]  J. Rothman,et al.  A Clamping Mechanism Involved in SNARE-Dependent Exocytosis , 2006, Science.

[26]  Michael Dybbs,et al.  Antagonistic Regulation of Synaptic Vesicle Priming by Tomosyn and UNC-13 , 2006, Neuron.

[27]  M. Nonet,et al.  Tomosyn Inhibits Synaptic Vesicle Priming in Caenorhabditis elegans , 2006, PLoS biology.

[28]  Y. Shin,et al.  Hemifusion arrest by complexin is relieved by Ca2+–synaptotagmin I , 2006, Nature Structural &Molecular Biology.

[29]  Marc Vidal,et al.  Systematic analysis of genes required for synapse structure and function , 2005, Nature.

[30]  S. Becker,et al.  Structural Basis for the Inhibitory Role of Tomosyn in Exocytosis*♦ , 2004, Journal of Biological Chemistry.

[31]  W. Weissenhorn,et al.  X-ray Structure of a Neuronal Complexin-SNARE Complex from Squid* , 2002, The Journal of Biological Chemistry.

[32]  T. Südhof,et al.  Three-Dimensional Structure of the Complexin/SNARE Complex , 2002, Neuron.

[33]  Lawrence Salkoff,et al.  SLO-1 Potassium Channels Control Quantal Content of Neurotransmitter Release at the C. elegans Neuromuscular Junction , 2001, Neuron.

[34]  Thomas C. Südhof,et al.  Complexins Regulate a Late Step in Ca2+-Dependent Neurotransmitter Release , 2001, Cell.

[35]  J. Kaplan,et al.  Serotonin Inhibition of Synaptic Transmission Gαo Decreases the Abundance of UNC-13 at Release Sites , 1999, Neuron.

[36]  M. Nonet,et al.  The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. , 1998, Molecular biology of the cell.

[37]  E. Marder,et al.  Temporal Dynamics of Graded Synaptic Transmission in the Lobster Stomatogastric Ganglion , 1997, The Journal of Neuroscience.

[38]  J A Crowell,et al.  A genetic selection for Caenorhabditis elegans synaptic transmission mutants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Thomas C. Südhof,et al.  Complexins: Cytosolic proteins that regulate SNAP receptor function , 1995, Cell.

[40]  M. Burrows,et al.  Graded synaptic interactions between local premotor interneurons of the locust. , 1979, Journal of neurophysiology.

[41]  P. Dev,et al.  Electrotonic processing of information by brain cells. , 1976, Science.

[42]  B. Katz,et al.  Tetrodotoxin and neuromuscular transmission , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[44]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[45]  R. L. Russell,et al.  Molecular basis of drug-resistance mutations in C. elegans. , 1985, Psychopharmacology bulletin.

[46]  Rand Jb,et al.  Molecular basis of drug-resistance mutations in C. elegans. , 1985 .