Dimensional Accuracy of the Skull Models Produced by Rapid Prototyping Technology Using Stereolithography Apparatus

The purpose of this study was to determine the dimensional accuracy of the skull models produced by Rapid prototyping technology using stereolithography apparatus. Computed tomography images were captured from four dry normal adult human skulls. The resultant 2-D images were stored in Digital Imaging and Communications in Medicine (DICOM) format. The segmentation of the images was prepared in MIMICS software. The slice files were then exported to a stereolithography apparatus (SLA) to produce the replica of each skull. Eight linear measurements were repeatedly made between identified landmarks on each of the original skull and its replica model using an electronic digital calliper. Each of the linear measurements was repeated 5 times and the average was taken to determine the absolute difference and percent difference between the original skull and its replica model. The overall absolute difference between the four human adult skulls and its replica models was 0.23 mm with a standard deviation of 1.37 mm. The percent difference was 0.08% with a standard deviation of 1.25%. The degree of error established by this system seems affordable in clinical applications when these models are used in the field of dental surgery for surgical treatment planning.