Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass

Abstract Understanding and investigating synergies between LiDAR (light detection and ranging) and SAR (synthetic aperture radar) provide new and innovative opportunities to characterize above-ground biomass. We demonstrate a spatial modeling framework that integrates above-ground biomass transects, derived from plot-based field data and small-footprint discrete return LiDAR, with complete wall-to-wall spaceborne L-band and C-band SAR to predict biomass over a larger area. Transect intervals of 2000 m, 1000 m, and 500 m were tested. Co-kriging, regression kriging, and regression co-kriging were used to extend the LiDAR-derived biomass transects. LiDAR-derived above-ground biomass and L-band backscatter (HV polarization) were moderately correlated, with a maximum semivariance distance between the LiDAR-derived biomass and SAR data of 374 m. Regression kriging at a sample interval of 500 m showed the smallest root mean squared error (RMSE) and mean absolute error (MAE) at 203.9 Mg ha − 1 and 131.6 Mg ha − 1 , respectively. The mean error (ME) showed an average bias of − 14.0 Mg ha − 1 . Predictions using regression co-kriging at a sample interval of 2000 m resulted in the highest RMSE and MAE values at 238.2 Mg ha − 1 and 164.6 Mg ha − 1 , respectively. ME also was highest, averaging − 37.4 Mg ha − 1 . Regardless of the spatial modeling technique employed, lower errors in predicted above-ground biomass were associated with smaller transect intervals. Moderate correlations between the LiDAR-derived above-ground biomass and the radar data impacted the predictive accuracy of the spatial models; however, overall variation in above-ground biomass in the study area was well represented. This study demonstrated that a sampling framework integrating LiDAR data with space-borne radar data using a spatial modeling approach can provide spatially-explicit above-ground biomass estimates for large areas. Such a sampling framework can be used in combination with ground plot and land cover data to assess carbon stocks under conditions where more common optical remote sensing approaches are difficult to implement.

[1]  M. Madden,et al.  Large area forest inventory using Landsat ETM+: A geostatistical approach , 2009 .

[2]  Jonas Ardö,et al.  Volume quantification of coniferous forest compartments using spectral radiance recorded by Landsat Thematic Mapper , 1992 .

[3]  N. Coops,et al.  Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America , 2011 .

[4]  J. Swenson,et al.  A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America , 2009 .

[5]  Alberto Moreira,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 2000, IEEE Trans. Geosci. Remote. Sens..

[6]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[7]  P. Leadley,et al.  Impacts of climate change on the future of biodiversity. , 2012, Ecology letters.

[8]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[9]  H. Andersen,et al.  A Comparison of Statistical Methods for Estimating Forest Biomass from Light Detection and Ranging Data , 2008 .

[10]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[11]  James S. Clark,et al.  Failure to migrate: lack of tree range expansion in response to climate change , 2012 .

[12]  Peter M. Atkinson,et al.  Geostatistics and remote sensing , 1998 .

[13]  Terje Gobakken,et al.  Estimating spruce and pine biomass with interferometric X-band SAR , 2010 .

[14]  P. Gessler,et al.  Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data , 2006 .

[15]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[16]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  David P. Roy,et al.  Accessing free Landsat data via the Internet: Africa's challenge , 2010 .

[18]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[19]  Hari Eswaran,et al.  Organic Carbon in Soils of the World , 1993 .

[20]  Guangqing Chi,et al.  Applied Spatial Data Analysis with R , 2015 .

[21]  Dirk H. Hoekman,et al.  PALSAR Wide-Area Mapping of Borneo: Methodology and Map Validation , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[22]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995 .

[23]  H. Shugart,et al.  Remote sensing of boreal forest biophysical and inventory parameters: a review , 2007 .

[24]  Kostas Papathanassiou,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[25]  Nicholas C. Coops,et al.  Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest , 2012 .

[26]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[27]  I. Sand Synthesis, part of a Special Feature on Ecosystem Services, Governance and Stakeholder Participation Payments for Ecosystem Services in the Context of Adaptation to Climate Change , 2012 .

[28]  David Pozo-Vázquez,et al.  A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain , 2009 .

[29]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[30]  Terje Gobakken,et al.  Improved estimates of forest vegetation structure and biomass with a LiDAR‐optimized sampling design , 2009 .

[31]  G. Clarke,et al.  Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city , 2010, Proceedings of the National Academy of Sciences.

[32]  S. Goetz,et al.  Mapping and monitoring carbon stocks with satellite observations: a comparison of methods , 2009, Carbon balance and management.

[33]  V. Kapos,et al.  Reducing Greenhouse Gas Emissions from Deforestation and Forest Degradation: Global Land-Use Implications , 2008, Science.

[34]  H. Balzter,et al.  Observations of forest stand top height and mean height from interferometric SAR and LiDAR over a conifer plantation at Thetford Forest, UK , 2007 .

[35]  M. Lefsky,et al.  Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud , 2012 .

[36]  M. Wulder,et al.  Forest inventory height update through the integration of lidar data with segmented Landsat imagery , 2003 .

[37]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[38]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[39]  Mihai A. Tanase,et al.  Soil Moisture Limitations on Monitoring Boreal Forest Regrowth Using Spaceborne L-Band SAR Data , 2011 .

[40]  E. Corbera,et al.  Institutional dimensions of Payments for Ecosystem Services: An analysis of Mexico's carbon forestry programme , 2009 .

[41]  R. Nelson,et al.  A Multiple Resource Inventory of Delaware Using Airborne Laser Data , 2003 .

[42]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[43]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[44]  T. A. Black,et al.  Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle , 2004 .

[45]  K. O. Niemann,et al.  Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass , 2011 .

[46]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[47]  Eric S. Kasischke,et al.  Resilience of Alaska's Boreal Forest to Climatic Change , 2010 .

[48]  A. H. Murphy,et al.  Probability, Statistics, And Decision Making In The Atmospheric Sciences , 1985 .

[49]  Keqi Zhang,et al.  Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data , 2006 .

[50]  Werner A. Kurz,et al.  Uncertainty of 21st century growing stocks and GHG balance of forests in British Columbia, Canada resulting from potential climate change impacts on ecosystem processes , 2011 .

[51]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[52]  Annika Kangas,et al.  Forest inventory: methodology and applications. , 2006 .

[53]  Mike Johnson,et al.  Best Practices , 2019, Professional JavaScript® for Web Developers.

[54]  JoBea Way,et al.  Radar estimates of aboveground biomass in boreal forests of interior Alaska , 1994, IEEE Trans. Geosci. Remote. Sens..

[55]  Thomas R. Loveland,et al.  A review of large area monitoring of land cover change using Landsat data , 2012 .

[56]  K. Lim,et al.  Operational implementation of a LiDAR inventory in Boreal Ontario , 2011 .

[57]  Juha Hyyppä,et al.  Advances in Forest Inventory Using Airborne Laser Scanning , 2012, Remote. Sens..

[58]  Helen Suich,et al.  Payments for environmental services, forest conservation and climate change : livelihoods in the REDD? , 2010 .

[59]  Multivariate Geostatistics , 2004 .

[60]  Sean C. Thomas,et al.  Increasing carbon storage in intact African tropical forests , 2009, Nature.

[61]  Kimberly M. Carlson,et al.  PERSPECTIVE: REDD pilot project scenarios: are costs and benefits altered by spatial scale? , 2009 .

[62]  Philippe Ciais,et al.  Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2 , 2007, Science.

[63]  K. Ranson,et al.  An evaluation of AIRSAR and SIR-C/X-SAR images for mapping northern forest attributes in Maine, USA , 1997 .

[64]  P. Curran The semivariogram in remote sensing: An introduction , 1988 .

[65]  D. Meidinger,et al.  Ecosystems of British Columbia , 1991 .

[66]  Richard Webster,et al.  Quantitative spatial analysis of soil in the field , 1985 .

[67]  Gordon B. Stenhouse,et al.  Change detection and landscape structure mapping using remote sensing , 2002 .

[68]  Michael A. Wulder,et al.  Integration of GLAS and Landsat TM data for aboveground biomass estimation , 2010 .

[69]  Christian Thiel,et al.  Operational Large-Area Forest Monitoring in Siberia Using ALOS PALSAR Summer Intensities and Winter Coherence , 2009, IEEE Transactions on Geoscience and Remote Sensing.