Uncertainty handling CMA-ES for reinforcement learning
暂无分享,去创建一个
[1] Risto Miikkulainen,et al. Accelerated Neural Evolution through Cooperatively Coevolved Synapses , 2008, J. Mach. Learn. Res..
[2] Christian Igel,et al. Efficient covariance matrix update for variable metric evolution strategies , 2009, Machine Learning.
[3] Sham M. Kakade,et al. A Natural Policy Gradient , 2001, NIPS.
[4] Petros Koumoutsakos,et al. A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.
[5] Richard S. Sutton,et al. Introduction to Reinforcement Learning , 1998 .
[6] Leslie Pack Kaelbling,et al. Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..
[7] Stefan Schaal,et al. Reinforcement Learning for Humanoid Robotics , 2003 .
[8] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[9] Stefan Schaal,et al. Natural Actor-Critic , 2003, Neurocomputing.
[10] Chun-Hung Chen,et al. An alternative simulation budget allocation scheme for efficient simulation , 2005, Int. J. Simul. Process. Model..
[11] Christian Igel,et al. Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..
[12] Gerald Sommer,et al. Evolutionary reinforcement learning of artificial neural networks , 2007, Int. J. Hybrid Intell. Syst..
[13] Jürgen Branke,et al. Integrating Techniques from Statistical Ranking into Evolutionary Algorithms , 2006, EvoWorkshops.
[14] Christian Igel,et al. Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem , 2008, EWRL.
[15] V. Heidrich-Meisner. Uncertainty Handling in Evolutionary Direct Policy Search , 2008 .
[16] Rémi Coulom,et al. Reinforcement Learning Using Neural Networks, with Applications to Motor Control. (Apprentissage par renforcement utilisant des réseaux de neurones, avec des applications au contrôle moteur) , 2002 .
[17] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.
[18] L. Buşoniu. Evolutionary function approximation for reinforcement learning , 2006 .
[19] Yishay Mansour,et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.
[20] Richard S. Sutton,et al. Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.
[21] H. Beyer,et al. Noisy Local Optimization with Evolution Strategies , 2002 .
[22] Martin A. Riedmiller,et al. Evaluation of Policy Gradient Methods and Variants on the Cart-Pole Benchmark , 2007, 2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning.
[23] Petros Koumoutsakos,et al. Evolutionary Optimization of Feedback Controllers for Thermoacoustic Instabilities , 2008 .
[24] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[25] Gregor Schöner,et al. Making Driver Modeling Attractive , 2005, IEEE Intell. Syst..
[26] Xin Yao,et al. Fast Evolution Strategies , 1997, Evolutionary Programming.
[27] Dirk V. Arnold,et al. Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.
[28] Christian Igel,et al. Uncertainty Handling in Model Selection for Support Vector Machines , 2008, PPSN.
[29] Christian Igel,et al. Evolution Strategies for Direct Policy Search , 2008, PPSN.