Estimating extremely large amounts of missing precipitation data

[1]  Peter Bühlmann,et al.  MissForest - non-parametric missing value imputation for mixed-type data , 2011, Bioinform..

[2]  A. Bárdossy,et al.  Infilling missing precipitation records – A comparison of a new copula-based method with other techniques , 2014 .

[3]  Ramesh S. V. Teegavarapu,et al.  Infilling missing precipitation records using variants of spatial interpolation and data‐driven methods: use of optimal weighting parameters and nearest neighbour‐based corrections , 2018 .

[4]  Patrick Royston,et al.  Multiple imputation using chained equations: Issues and guidance for practice , 2011, Statistics in medicine.

[5]  Ramesh S. V. Teegavarapu,et al.  Estimation of missing precipitation records integrating surface interpolation techniques and spatio-temporal association rules , 2009 .

[6]  M. Maugeri,et al.  Improving estimation of missing values in daily precipitation series by a probability density function‐preserving approach , 2010 .

[7]  Patrick Royston,et al.  Tuning multiple imputation by predictive mean matching and local residual draws , 2014, BMC Medical Research Methodology.

[8]  Xiao-Hua Zhou,et al.  Multiple imputation: review of theory, implementation and software , 2007, Statistics in medicine.

[9]  Jungjin Kim,et al.  A Heuristic Gap Filling Method for Daily Precipitation Series , 2016, Water Resources Management.

[10]  Andrew Kusiak,et al.  Assessment of different methods for estimation of missing data in precipitation studies , 2017 .

[11]  R. Teegavarapu Statistical corrections of spatially interpolated missing precipitation data estimates , 2014 .

[12]  Emanuele Barca,et al.  A methodology for treating missing data applied to daily rainfall data in the Candelaro River Basin (Italy) , 2010, Environmental monitoring and assessment.

[13]  D. Rubin,et al.  Fully conditional specification in multivariate imputation , 2006 .

[14]  Fateh Chebana,et al.  Multivariate missing data in hydrology – Review and applications , 2017 .

[15]  M. Islam,et al.  Comparison of missing value estimation techniques in rainfall data of Bangladesh , 2018, Theoretical and Applied Climatology.

[16]  T. Schneider Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. , 2001 .

[17]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[18]  Fei Tang,et al.  Random forest missing data algorithms , 2017, Stat. Anal. Data Min..

[19]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[20]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[21]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[22]  C. Willmott,et al.  A refined index of model performance , 2012 .

[23]  Lei Chen,et al.  Comparison of the multiple imputation approaches for imputing rainfall data series and their applications to watershed models , 2019, Journal of Hydrology.

[24]  J. Lovett,et al.  Using self-organizing maps to infill missing data in hydro-meteorological time series from the Logone catchment, Lake Chad basin , 2016, Environmental Monitoring and Assessment.

[25]  Vicente Caselles,et al.  Multiple imputation of rainfall missing data in the Iberian Mediterranean context , 2017 .

[26]  M. Genton Separable approximations of space‐time covariance matrices , 2007 .

[27]  Edzer Pebesma,et al.  Spatio-Temporal Interpolation using gstat , 2016, R J..

[28]  Matthieu Resche-Rigon,et al.  Multiple imputation by chained equations for systematically and sporadically missing multilevel data , 2018, Statistical methods in medical research.

[29]  F. Woodcock,et al.  The Evaluation of Yes/No Forecasts for Scientific and Administrative Purposes , 1976 .

[30]  Norazan Mohamed Ramli,et al.  Normal ratio in multiple imputation based on bootstrapped sample for rainfall data with missingness , 2017 .

[31]  Cem Iyigun,et al.  Comparison of missing value imputation methods in time series: the case of Turkish meteorological data , 2013, Theoretical and Applied Climatology.

[32]  Roslinazairimah Zakaria,et al.  Estimation of Missing Rainfall Data Using Spatial Interpolation and Imputation Methods , 2015 .