Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size.

We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork that are such that the meshwork's energy is a function F(el)[A(xi)] not of the real microscopic membrane area A, but of a smoothed membrane's area A(xi), which corresponds to the area of the membrane coarse grained at the mesh size xi. We show that the meshwork modifies the membrane tension sigma both below and above the scale xi, inducing a steep crossover of amplitude deltasigma=dF(el)/dA(xi). The predictions of our model account for the fluctuation spectrum of red blood cell membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane areas. We also predict an observable tension jump for membranes decorated with polymer "brushes."

[1]  N. Sheibani,et al.  Paris , 1894, The Hospital.

[2]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[3]  F. Brochard,et al.  Frequency spectrum of the flicker phenomenon in erythrocytes , 1975 .

[4]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[5]  W. Helfrich,et al.  Undulations, steric interaction and cohesion of fluid membranes , 1984 .

[6]  E. Sackmann,et al.  Bilayer bending elasticity measured by Fourier analysis of thermally excited surface undulations of flaccid vesicles , 1985 .

[7]  D. Branton,et al.  Visualization of the protein associations in the erythrocyte membrane skeleton. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[8]  P. G. de Gennes,et al.  Polymers at an interface; a simplified view , 1987 .

[9]  Erich Sackmann,et al.  Dynamic reflection interference contrast (RIC-) microscopy : a new method to study surface excitations of cells and to measure membrane bending elastic moduli , 1987 .

[10]  T M Allen,et al.  Large unilamellar liposomes with low uptake into the reticuloendothelial system , 1987, FEBS letters.

[11]  W. Helfrich,et al.  Mutual adhesion of lecithin membranes at ultralow tensions , 1989 .

[12]  V. Bennett,et al.  The spectrin-actin junction of erythrocyte membrane skeletons. , 1989, Biochimica et biophysica acta.

[13]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[14]  M. D. Mitov,et al.  Pulsed-light microscopy applied to the measurement of the bending elasticity of giant liposomes , 1992 .

[15]  Mark Goulian,et al.  Long-Range Forces in Heterogeneous Fluid Membranes , 1993 .

[16]  Samuel A. Safran,et al.  Statistical Thermodynamics of Surfaces , 1994 .

[17]  Samuel A. Safran,et al.  Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes , 1994 .

[18]  E. Evans,et al.  Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. , 1994, Annual review of biophysics and biomolecular structure.

[19]  J. Wheater Random surfaces: from polymer membranes to strings , 1994 .

[20]  Feder,et al.  Fluctuation analysis of tension-controlled undulation forces between giant vesicles and solid substrates. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  E. Sackmann,et al.  Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. , 1995, Biophysical journal.

[22]  R. Lipowsky,et al.  Elastic Properties of Polymer-Decorated Membranes , 1996 .

[23]  E. Evans,et al.  Elasticity of ``Fuzzy'' Biomembranes , 1997 .

[24]  L. Auvray,et al.  Monodisperse Vesicles Stabilized by Grafted Polymers , 1997 .

[25]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. , 1998, Biophysical journal.

[26]  E. Sackmann,et al.  SHAPE CHANGES OF SELF-ASSEMBLED ACTIN BILAYER COMPOSITE MEMBRANES , 1997, physics/9712020.

[27]  D. Boal Two-Dimensional Cytoskeletons Under Stress , 1998 .

[28]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. , 1998, Biophysical journal.

[29]  P. Bassereau,et al.  ACTIVITY OF TRANSMEMBRANE PROTEINS INDUCES MAGNIFICATION OF SHAPE FLUCTUATIONS OF LIPID MEMBRANES , 1999 .

[30]  M Marsh,et al.  The structural era of endocytosis. , 1999, Science.

[31]  J. Simeon,et al.  Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. , 2001, Biophysical journal.

[32]  C. Morris,et al.  Cell Surface Area Regulation and Membrane Tension , 2001, The Journal of Membrane Biology.

[33]  Lin Yang,et al.  Observation of a Membrane Fusion Intermediate Structure , 2002, Science.

[34]  B. Alberts,et al.  Molecular Biology of the Cell 4th edition , 2007 .