Numerical Methods for the Resource Allocation Problem in a Computer Network

[1]  Yurii Nesterov,et al.  Implementable tensor methods in unconstrained convex optimization , 2019, Mathematical Programming.

[2]  Yin Tat Lee,et al.  Near Optimal Methods for Minimizing Convex Functions with Lipschitz $p$-th Derivatives , 2019, COLT.

[3]  Alexander Gasnikov,et al.  On Accelerated Alternating Minimization , 2019 .

[4]  Darina Dvinskikh,et al.  On the Complexity of Approximating Wasserstein Barycenters , 2019, ICML.

[5]  D. Rokhlin Resource allocation in communication networks with large number of users: the stochastic gradient descent method. , 2019, 1905.04382.

[6]  Darina Dvinskikh,et al.  On Primal and Dual Approaches for Distributed Stochastic Convex Optimization over Networks , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[7]  Y. Nesterov,et al.  Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems , 2019, Doklady Mathematics.

[8]  Michael I. Jordan,et al.  A Short Note on Concentration Inequalities for Random Vectors with SubGaussian Norm , 2019, ArXiv.

[9]  Yurii Nesterov,et al.  Lectures on Convex Optimization , 2018 .

[10]  Pavel Dvurechensky,et al.  Composite optimization for the resource allocation problem , 2018, Optim. Methods Softw..

[11]  Alexander Gasnikov,et al.  Primal–dual accelerated gradient methods with small-dimensional relaxation oracle , 2018, Optim. Methods Softw..

[12]  Kaiwen Zhou,et al.  Direct Acceleration of SAGA using Sampled Negative Momentum , 2018, AISTATS.

[13]  Fanhua Shang,et al.  A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates , 2018, ICML.

[14]  Darina Dvinskikh,et al.  Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters , 2018, NeurIPS.

[15]  Angelia Nedic,et al.  Distributed Computation of Wasserstein Barycenters Over Networks , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[16]  Alexander Gasnikov,et al.  Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm , 2018, ICML.

[17]  Yi Zhou,et al.  Random gradient extrapolation for distributed and stochastic optimization , 2017, SIAM J. Optim..

[18]  P. Dvurechensky,et al.  Dual approaches to the minimization of strongly convex functionals with a simple structure under affine constraints , 2017 .

[19]  Anton Rodomanov,et al.  Primal-Dual Method for Searching Equilibrium in Hierarchical Congestion Population Games , 2016, DOOR.

[20]  Alexey Chernov,et al.  Fast Primal-Dual Gradient Method for Strongly Convex Minimization Problems with Linear Constraints , 2016, DOOR.

[21]  Y. Nesterov,et al.  Efficient numerical methods for entropy-linear programming problems , 2016, Computational Mathematics and Mathematical Physics.

[22]  Amir Beck Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB , 2014 .

[23]  Amir Beck,et al.  Introduction to Nonlinear Optimization - Theory, Algorithms, and Applications with MATLAB , 2014, MOS-SIAM Series on Optimization.

[24]  Sébastien Bubeck Convex Optimization: Algorithms and Complexity , 2014, Found. Trends Mach. Learn..

[25]  A. Kakhbod Resource Allocation in Decentralized Systems with Strategic Agents: An Implementation Theory Approach , 2013 .

[26]  Stephen J. Wright,et al.  Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.

[27]  Uriel G. Rothblum,et al.  Accuracy Certificates for Computational Problems with Convex Structure , 2010, Math. Oper. Res..

[28]  A. Juditsky,et al.  Large Deviations of Vector-valued Martingales in 2-Smooth Normed Spaces , 2008, 0809.0813.

[29]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[30]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[31]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[32]  E. Friedman,et al.  The complexity of resource allocation and price mechanisms under bounded rationality , 1995 .

[33]  D. E. Campbell Resource Allocation Mechanisms , 1987 .

[34]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[35]  Yurii Nesterov,et al.  DP Dual subgradient method with averaging for optimal resource allocation , 2017 .

[36]  and as an in , 2022 .