Facets for the cut cone I

We study facets of the cut coneCn, i.e., the cone of dimension 1/2n(n − 1) generated by the cuts of the complete graph onn vertices. Actually, the study of the facets of the cut cone is equivalent in some sense to the study of the facets of the cut polytope. We present several operations on facets and, in particular, a “lifting” procedure for constructing facets ofCn+1 from given facets of the lower dimensional coneCn. After reviewing hypermetric valid inequalities, we describe the new class of cycle inequalities and prove the facet property for several subclasses. The new class of parachute facets is developed and other known facets and valid inequalities are presented.

[1]  F. Hadlock,et al.  Finding a Maximum Cut of a Planar Graph in Polynomial Time , 1975, SIAM J. Comput..

[2]  Michel Deza,et al.  The classification of finite connected hypermetric spaces , 1987, Graphs Comb..

[3]  Francisco Barahona,et al.  On the cycle polytope of a binary matroid , 1986, J. Comb. Theory, Ser. B.

[4]  F. Barahona The max-cut problem on graphs not contractible to K5 , 1983 .

[5]  Michel Deza,et al.  The inequicut cone , 1993, Discret. Math..

[6]  Michel Deza,et al.  Facets for the cut cone II: Clique-web inequalities , 1992, Math. Program..

[7]  Svatopluk Poljak,et al.  Max-cut in circulant graphs , 1992, Discret. Math..

[8]  M. Deza,et al.  The hypermetric cone is polyhedral , 1993, Comb..

[9]  Viatcheslav P. Grishukhin All Facets of the Cut Cone Cn for n = 7 are Known , 1990, Eur. J. Comb..

[10]  Antonio Sassano,et al.  The equipartition polytope. II: Valid inequalities and facets , 1990, Math. Program..

[11]  Patrice Assouad Sur les Inégalités Valides dans L1 , 1984, Eur. J. Comb..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  David Avis,et al.  The cut cone, L1 embeddability, complexity, and multicommodity flows , 1991, Networks.

[14]  P. L. Ivanescu Some Network Flow Problems Solved with Pseudo-Boolean Programming , 1965 .

[15]  Michael Jünger,et al.  Experiments in quadratic 0–1 programming , 1989, Math. Program..

[16]  Jean Fonlupt,et al.  Compositions in the bipartite subgraph polytope , 1992, Discret. Math..

[17]  Martin Grötschel,et al.  Facets of the clique partitioning polytope , 1990, Math. Program..

[18]  David Avis,et al.  All the Facets of the Six-point Hamming Cone , 1989, Eur. J. Comb..

[19]  J. J. Seidel,et al.  Tables of two-graphs , 1981 .

[20]  Caterina De Simone,et al.  Collapsing and lifting for the cut cone , 1994, Discret. Math..

[21]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[22]  Caterina De Simone,et al.  The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..

[23]  Martin Grötschel,et al.  Facets of the Bipartite Subgraph Polytope , 1985, Math. Oper. Res..

[24]  Martin Grötschel,et al.  Weakly bipartite graphs and the Max-cut problem , 1981, Oper. Res. Lett..

[25]  Antonio Sassano,et al.  The equipartition polytope. I: Formulations, dimension and basic facets , 1990, Math. Program..

[26]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[27]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[28]  Alexander V. Karzanov,et al.  Metrics and undirected cuts , 1985, Math. Program..

[29]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[30]  Siam J. CoMPtrr,et al.  FINDING A MAXIMUM CUT OF A PLANAR GRAPH IN POLYNOMIAL TIME * , 2022 .