The use of opportunistic data for IUCN Red List assessments

IUCN Red Lists are recognized worldwide as powerful instruments for the conservation of species. Quantitative criteria to standardize approaches for estimating population trends, geographic ranges and population sizes have been developed at global and sub-global levels. Little attention has been given to the data needed to estimate species trends and range sizes for IUCN Red List assessments. Few regions collect monitoring data in a structured way and usually only for a limited number of taxa. Therefore, opportunistic data are increasingly used for estimating trends and geographic range sizes. Trend calculations use a range of proxies: (i) monitoring sentinel populations, (ii) estimating changes in available habitat, or (iii) statistical models of change based on opportunistic records. Geographic ranges have been determined using: (i) marginal occurrences, (ii) habitat distributions, (iii) range-wide occurrences, (iv) species distribution modelling (including site-occupancy models), and (v) process-based modelling. Red List assessments differ strongly among regions (Europe, Britain and Flanders, north Belgium). Across different taxonomic groups, in European Red Lists IUCN criteria B and D resulted in the highest level of threat. In Britain, this was the case for criterion D and criterion A, while in Flanders criterion B and criterion A resulted in the highest threat level. Among taxonomic groups, however, large differences in the use of IUCN criteria were revealed. We give examples from Europe, Britain and Flemish Red List assessments using opportunistic data and give recommendations for a more uniform use of IUCN criteria among regions and among taxonomic groups.

[1]  G. Mace Classifying threatened species: means and ends , 1994 .

[2]  Michael J. O. Pocock,et al.  Ecological monitoring with citizen science: the design and implementation of schemes for recording plants in Britain and Ireland , 2015 .

[3]  Roger L. H. Dennis,et al.  The effects of visual apparency on bias in butterfly recording and monitoring , 2006 .

[4]  H. Temple,et al.  The Status and Distribution of European Mammals , 2007 .

[5]  B. Collen,et al.  Tracking Change in National-Level Conservation Status: National Red Lists , 2013 .

[6]  D. Maes,et al.  A new methodology for compiling national Red Lists applied to butterflies (Lepidoptera, Rhopalocera) in Flanders (N-Belgium) and the Netherlands , 1997, Journal of Insect Conservation.

[7]  熊本県希少野生動植物検討委員会,et al.  くまもとの希少な野生動植物 : red data book , 1999 .

[8]  Graeme Caughley,et al.  Directions in conservation biology , 1994 .

[9]  G. Mace The development of new criteria for listing species on the IUCN Red List. , 1992 .

[10]  Marc Kéry,et al.  Metapopulation dynamics in the butterfly Hipparchia semele changed decades before occupancy declined in The Netherlands. , 2011, Ecological applications : a publication of the Ecological Society of America.

[11]  S. Freeman,et al.  Comparison of trends in butterfly populations between monitoring schemes , 2014, Journal of Insect Conservation.

[12]  M. Seddon,et al.  European Red List of non-marine molluscs , 2011 .

[13]  H. Van Dyck,et al.  Declines in Common, Widespread Butterflies in a Landscape under Intense Human Use , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[14]  Catherine H. Graham,et al.  A comparison of methods for mapping species ranges and species richness , 2006 .

[15]  Ans Mouton,et al.  IUCN Red List of freshwater fishes and lampreys in Flanders (north Belgium) , 2014 .

[16]  Wolfgang Schwanghart,et al.  Spatial bias in the GBIF database and its effect on modeling species' geographic distributions , 2014, Ecol. Informatics.

[17]  K. Walker,et al.  The contribution of volunteer recorders to our understanding of biological invasions , 2015 .

[18]  Stephen R. Baillie,et al.  Integrated population monitoring of breeding birds in Britain and Ireland , 2008 .

[19]  H. Resit Akçakaya,et al.  Value of the IUCN Red List , 2003 .

[20]  B. Coppins,et al.  A conservation evaluation of British lichens and lichenicolous fungi , 2012 .

[21]  H. Temple,et al.  The Status and Distribution of Mediterranean Mammals , 2009 .

[22]  C. S. Robbins,et al.  The breeding bird survey 1967 and 1968 , 1969 .

[23]  N. Isaac,et al.  Beyond maps: a review of the applications of biological records , 2015 .

[24]  Martin Hermy,et al.  Ecodistricten en ecoregio's als instrument voor natuurstudie en milieubeleid , 2004 .

[25]  T. Murray,et al.  Building on IUCN Regional Red Lists to Produce Lists of Species of Conservation Priority: a Model with Irish Bees , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[26]  J. Freyhof,et al.  European Red List of freshwater fishes , 2011 .

[27]  M. Cassini Ranking threats using species distribution models in the IUCN Red List assessment process , 2011, Biodiversity and Conservation.

[28]  N. Maxted,et al.  European Red List of vascular plants , 2011 .

[29]  P. Cardoso,et al.  Adapting the IUCN Red List criteria for invertebrates , 2011 .

[30]  Wayne M. Getz,et al.  LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions , 2007, PloS one.

[31]  Richard Fox,et al.  Quantifying range‐wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records , 2014 .

[32]  Sandro Azaele,et al.  Can coarse‐grain patterns in insect atlas data predict local occupancy? , 2014 .

[33]  N. Cox,et al.  European Red List of reptiles , 2009 .

[34]  D. Bal,et al.  AS WE SEE IT Harmonization of Red Lists in Europe: some lessons learned in the Netherlands when applying the new IUCN Red List Categories and Criteria version 3.1. , 2007 .

[35]  S. Falk A Review of the Scarce and Threatened Flies of Great Britain, Part 1 , 1991 .

[36]  A. Juslén,et al.  Application of the Red‐List Index at a National Level for Multiple Species Groups , 2013, Conservation biology : the journal of the Society for Conservation Biology.

[37]  Peter Rothery,et al.  Application of generalized additive models to butterfly transect count data , 2001 .

[38]  Georgina M. Mace,et al.  Assessing Extinction Threats: Toward a Reevaluation of IUCN Threatened Species Categories , 1991 .

[39]  Wayne M. Getz,et al.  A local nearest-neighbor convex-hull construction of home ranges and utilization distributions , 2004 .

[40]  Arco J. van Strien,et al.  Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models , 2013 .

[41]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[42]  Michael J. O. Pocock,et al.  Bias and information in biological records , 2015 .

[43]  Josef Settele,et al.  Butterfly monitoring in Europe: methods, applications and perspectives , 2008, Biodiversity and Conservation.

[44]  P. S. Hyman,et al.  A Review of the Scarce and Threatened Coleoptera of Great Britain , 1992 .

[45]  H. Synge,et al.  The IUCN plant red data book , 1978 .

[46]  L. Lohmann,et al.  Understanding bias in geographic range size estimates , 2012 .

[47]  Hugh P. Possingham,et al.  Limits to the use of threatened species lists , 2002 .

[48]  K. Alexander,et al.  European Red List of saproxylic beetles , 2010 .

[49]  Hans Van Dyck,et al.  Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario? , 2001 .

[50]  Hans Schmid,et al.  A Case Study in Applying the IUCN Regional Guidelines for National Red Lists and Justifications for their Modification , 2005 .

[51]  G. Mace,et al.  Making Consistent IUCN Classifications under Uncertainty , 2000 .

[52]  S. Stuart,et al.  The status and distribution of reptiles and amphibians of the Mediterranean basin , 2006 .

[53]  Arno Thomaes,et al.  Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle (Lucanus cervus) , 2008 .

[54]  Helen E. Roy,et al.  Understanding citizen science and environmental monitoring: final report on behalf of UK Environmental Observation Framework , 2012 .

[55]  Elizabeth T. Kennedy,et al.  Biodiversity Indicators Based on Trends in Conservation Status: Strengths of the IUCN Red List Index , 2006, Conservation biology : the journal of the Society for Conservation Biology.

[56]  E. Riservato,et al.  European Red List of Dragonflies , 2010 .

[57]  M. F. Siqueira,et al.  Assessing the conservation status of species with limited available data and disjunct distribution , 2014 .

[58]  J. Rodríguez National Red Lists: the largest global market for IUCN Red List Categories and Criteria , 2008 .

[59]  Guidelines for Using the IUCN Red List Categories and Criteria , 2005 .

[60]  K. Gaston,et al.  The sizes of species’ geographic ranges , 2009 .

[61]  R. Cavanagh,et al.  Overview of the conservation status of cartilaginous fishes (Chondrichthyans) in the Mediterranean Sea , 2007 .

[62]  R. Didham,et al.  Applications and implications of ecological energetics. , 2014, Trends in ecology & evolution.

[63]  Tom A. August,et al.  A vascular plant red list for England , 2014 .

[64]  D. Maes,et al.  Testing the applicability of regional IUCN Red List criteria on ladybirds (Coleoptera, Coccinellidae) in Flanders (north Belgium): opportunities for conservation , 2015 .

[65]  Matthew J. Smith,et al.  Using species distribution models to inform IUCN Red List assessments , 2014 .

[66]  T. Brereton,et al.  A new Red List of British butterflies , 2011 .

[67]  T. Brereton,et al.  United Kingdom Butterfly Monitoring Scheme annual report 2007 , 2010 .

[68]  R. Dennis,et al.  Bias in Butterfly Distribution Maps: The Effects of Sampling Effort , 1999, Journal of Insect Conservation.

[69]  Bram Van Moorter,et al.  Searching for the fundamental niche using individual-based habitat selection modelling across populations , 2015 .

[70]  T. Brooks,et al.  How similar are national red lists and the IUCN Red List , 2010 .

[71]  J. Clobert,et al.  Advantages of Volunteer‐Based Biodiversity Monitoring in Europe , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[72]  Ary A. Hoffmann,et al.  Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continental‐scale soil and weather data , 2014 .

[73]  Jorge Soberón,et al.  Assessing completeness of biodiversity databases at different spatial scales , 2007 .

[74]  Georgina M. Mace,et al.  The Application of IUCN Red List Criteria at Regional Levels , 2001 .

[75]  B. Collen,et al.  National Red Listing Beyond the 2010 Target , 2010, Conservation biology : the journal of the Society for Conservation Biology.

[76]  Hugh P Possingham,et al.  Tradeoffs of different types of species occurrence data for use in systematic conservation planning. , 2006, Ecology letters.

[77]  Quentin Groom,et al.  Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants , 2013, Ecology letters.

[78]  Michael J. Samways,et al.  Reserve selection using Red Listed taxa in three global biodiversity hotspots: Dragonflies in South Africa , 2009 .

[79]  J. Settele,et al.  European Red List of Butterflies , 2010 .

[80]  J. Rodríguez,et al.  National Threatened Species Listing Based on IUCN Criteria and Regional Guidelines: Current Status and Future Perspectives , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[81]  K. Bollmann,et al.  From Red Lists to Species of Conservation Concern , 2004 .

[82]  M. Kearney,et al.  Habitat, environment and niche: what are we modelling? , 2006 .

[83]  Virgilio Hermoso,et al.  Evaluating the costs and benefits of systematic data acquisition for conservation assessments , 2015 .

[84]  W. Darwall,et al.  The Status and Distribution of the Freshwater Fish Endemic to the Mediterranean Basin , 2006 .

[85]  E J Milner-Gulland,et al.  Quantification of Extinction Risk: IUCN's System for Classifying Threatened Species , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[86]  D. Strayer Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future , 2010 .

[87]  N. M. Collins,et al.  The IUCN invertebrate red data book , 1983 .

[88]  John H. Lawton,et al.  Correcting for variation in recording effort in analyses of diversity hotspots , 1993 .

[89]  Michael J. O. Pocock,et al.  The Biological Records Centre: a pioneer of citizen science , 2015 .

[90]  J. A. Thomas Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[91]  L. Boddy,et al.  Species Status No . 14 Red List of Fungi for Great Britain : Boletaceae A pilot conservation assessment based on national database records , fruit body morphology and DNA barcoding , 2013 .

[92]  D. MacKenzie Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence , 2005 .

[93]  Mark Hill,et al.  Local frequency as a key to interpreting species occurrence data when recording effort is not known , 2012 .

[94]  T. Brereton,et al.  The development of butterfly indicators in the United Kingdom and assessments in 2010 , 2011, Journal of Insect Conservation.

[95]  D. Noble,et al.  Regional IUCN Red Listing: the Process as Applied to Birds in the United Kingdom , 2005 .

[96]  Marc Kéry,et al.  Site-occupancy models may offer new opportunities for dragonfly monitoring based on daily species lists , 2010 .

[97]  Eve McDonald-Madden,et al.  Predicting species distributions for conservation decisions , 2013, Ecology letters.

[98]  Piero Visconti,et al.  What spatial data do we need to develop global mammal conservation strategies? , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[99]  R. Whittaker,et al.  Beyond scarcity: citizen science programmes as useful tools for conservation biogeography , 2010 .

[100]  D. Maes,et al.  De IUCN Rode Lijst van de amfibieën en reptielen in Vlaanderen , 2012 .

[101]  N. Cox,et al.  European Red List of amphibians , 2009 .

[102]  M. Burgman,et al.  Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning , 2003 .

[103]  D. Roy,et al.  Invasive alien predator causes rapid declines of native European ladybirds , 2012 .

[104]  Denis Couvet,et al.  French citizens monitoring ordinary birds provide tools for conservation and ecological sciences , 2012 .

[105]  Michael Hoffmann,et al.  The value of the IUCN Red List for conservation. , 2006, Trends in ecology & evolution.

[106]  P. Cardoso,et al.  The underrepresentation and misrepresentation of invertebrates in the IUCN Red List , 2012 .

[107]  David B. Roy,et al.  Statistics for citizen science: extracting signals of change from noisy ecological data , 2014 .

[108]  Hans Van Dyck,et al.  Applying IUCN Red List criteria at a small regional level: a test case with butterflies in Flanders (north Belgium) , 2012 .

[109]  D. Maes,et al.  De IUCN rode lijst van de zoogdieren in Vlaanderen , 2014 .

[110]  J. Greenwood,et al.  Comparative Losses of British Butterflies, Birds, and Plants and the Global Extinction Crisis , 2004, Science.

[111]  Peter Rothery,et al.  Reduced‐effort schemes for monitoring butterfly populations , 2007 .

[112]  C. Swaay An assessment of the changes in butterfly abundance in The Netherlands during the 20th Century , 1990 .