Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate

<p style='text-indent:20px;'>In this paper, we analyze a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate. The nonmonotone incidence rate describes the "psychological effect": when the number of the infected individuals (denoted by <inline-formula><tex-math id="M1">\begin{document}$ I $\end{document}</tex-math></inline-formula>) exceeds a certain level, the incidence rate is a decreasing function with respect to <inline-formula><tex-math id="M2">\begin{document}$ I $\end{document}</tex-math></inline-formula>. The piecewise-smooth treatment rate describes the situation where the community has limited medical resources, treatment rises linearly with <inline-formula><tex-math id="M3">\begin{document}$ I $\end{document}</tex-math></inline-formula> until the treatment capacity is reached, after which constant treatment (i.e., the maximum treatment) is taken.Our analysis indicates that there exists a critical value <inline-formula><tex-math id="M4">\begin{document}$ \widetilde{I_0} $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M5">\begin{document}$ ( = \frac{b}{d}) $\end{document}</tex-math></inline-formula> for the infective level <inline-formula><tex-math id="M6">\begin{document}$ I_0 $\end{document}</tex-math></inline-formula> at which the health care system reaches its capacity such that:<b>(i)</b> When <inline-formula><tex-math id="M7">\begin{document}$ I_0 \geq \widetilde{I_0} $\end{document}</tex-math></inline-formula>, the transmission dynamics of the model is determined by the basic reproduction number <inline-formula><tex-math id="M8">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula>: <inline-formula><tex-math id="M9">\begin{document}$ R_0 = 1 $\end{document}</tex-math></inline-formula> separates disease persistence from disease eradication. <b>(ii)</b> When <inline-formula><tex-math id="M10">\begin{document}$ I_0 < \widetilde{I_0} $\end{document}</tex-math></inline-formula>, the model exhibits very rich dynamics and bifurcations, such as multiple endemic equilibria, periodic orbits, homoclinic orbits, Bogdanov-Takens bifurcations, and subcritical Hopf bifurcation.</p>

[1]  R. I. Bogdanov Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues , 1975 .

[2]  Murray E. Alexander,et al.  Bifurcation Analysis of an SIRS Epidemic Model with Generalized Incidence , 2005, SIAM J. Appl. Math..

[3]  Daqing Jiang,et al.  The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence , 2012 .

[4]  M. Lizana,et al.  Multiparametric bifurcations for a model in epidemiology , 1996, Journal of mathematical biology.

[5]  S. Ruan,et al.  Global Dynamics of a Susceptible-Infectious-Recovered Epidemic Model with a Generalized Nonmonotone Incidence Rate , 2020, Journal of dynamics and differential equations.

[6]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[7]  Xianning Liu,et al.  Backward bifurcation of an epidemic model with saturated treatment function , 2008 .

[8]  Weinian Zhang,et al.  Coexistence of Limit Cycles and Homoclinic Loops in a SIRS Model with a Nonlinear Incidence Rate , 2008, SIAM J. Appl. Math..

[9]  Shigui Ruan,et al.  Global analysis of an epidemic model with nonmonotone incidence rate , 2006, Mathematical Biosciences.

[10]  Yong Yao Bifurcations of a Leslie‐Gower prey‐predator system with ratio‐dependent Holling IV functional response and prey harvesting , 2019, Mathematical Methods in the Applied Sciences.

[11]  Xingbo Liu,et al.  Stability analysis of an SEIQV epidemic model with saturated incidence rate , 2012 .

[12]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[13]  Tingting Zhou,et al.  Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function , 2014, Appl. Math. Comput..

[14]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[15]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[16]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[17]  Wendi Wang Backward bifurcation of an epidemic model with treatment. , 2006, Mathematical biosciences.

[18]  Shigui Ruan,et al.  Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate , 2019, Journal of Differential Equations.

[19]  H. Hethcote,et al.  Some epidemiological models with nonlinear incidence , 1991, Journal of mathematical biology.

[20]  S. Ruan,et al.  Bifurcations in an epidemic model with constant removal rate of the infectives , 2004 .

[21]  W. Eckalbar,et al.  Dynamics of an epidemic model with quadratic treatment , 2011 .