A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries.

[1]  A. Glushenkov,et al.  Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries , 2015 .

[2]  Yi Cui,et al.  Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries , 2014, Nature Communications.

[3]  S. Haigh,et al.  Production of few-layer phosphorene by liquid exfoliation of black phosphorus. , 2014, Chemical communications.

[4]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[5]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[6]  Pablo Jarillo-Herrero,et al.  Two-dimensional crystals: phosphorus joins the family. , 2014, Nature nanotechnology.

[7]  Zhenhua Ni,et al.  Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization , 2014, Nano Research.

[8]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[9]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[10]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[11]  Eugenie Samuel Reich,et al.  Phosphorene excites materials scientists , 2014, Nature.

[12]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[13]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[14]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[15]  Adam Heller,et al.  Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material , 2013 .

[16]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[17]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[18]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[19]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[20]  Guangyuan Zheng,et al.  High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach , 2013, Proceedings of the National Academy of Sciences.

[21]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[22]  Xinping Ai,et al.  High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg , 2013 .

[23]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[24]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[25]  Jianjun Li,et al.  Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. , 2012, Angewandte Chemie.

[26]  Jiangfeng Qian,et al.  Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. , 2012, Chemical communications.

[27]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[28]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[29]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[30]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[31]  D. Corbridge Phosphorus : chemistry, biochemistry and technology , 2013 .

[32]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[33]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[34]  F. Favier,et al.  Activated-phosphorus as new electrode material for Li-ion batteries , 2011 .

[35]  A. Hayashi,et al.  All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode , 2010 .

[36]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[37]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[38]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[39]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[40]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[41]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[42]  Y. Akahama,et al.  Raman study of black phosphorus up to 13 GPa , 1997 .

[43]  Vanderborgh,et al.  Raman studies of black phosphorus from 0.25 to 7.7 GPa at 15 K. , 1989, Physical review. B, Condensed matter.

[44]  T. Jow,et al.  The Role of Conductive Polymers in Alkali‐Metal Secondary Electrodes , 1987 .

[45]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[46]  S. Sugai,et al.  Raman and infrared reflection spectroscopy in black phosphorus , 1985 .

[47]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[48]  R. Hultgren,et al.  The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus , 1935 .