Meniscus coated high open-circuit voltage bi-layer solar cells

Neat bi-layer solar cells of a fullerene acceptor and a cyanine dye donor were prepared using meniscus coating. Meniscus coating is very material efficient and leads to high quality pinhole-free films. The cells exhibit high open circuit voltages of 1 volt, only 0.8 eV below the band gap of the cyanine dye. This is one of the smallest differences reported for organic solar cells and illustrates an almost optimal donor-acceptor energy level alignment.

[1]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[2]  D. Guldi,et al.  Efficient light harvesting anionic heptamethine cyanine–[60] and [70]fullerene hybrids , 2011 .

[3]  Parallel Bulk‐Heterojunction Solar Cell by Electrostatically Driven Phase Separation , 2011, Advanced materials.

[4]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[5]  M. Weil,et al.  Dicyanovinyl–Substituted Oligothiophenes: Structure‐Property Relationships and Application in Vacuum‐Processed Small Molecule Organic Solar Cells , 2011 .

[6]  K. Leo,et al.  Small-molecule solar cells—status and perspectives , 2008, Nanotechnology.

[7]  Kazuhito Hashimoto,et al.  Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. , 2011, Nature materials.

[8]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[9]  Wenjun Wu,et al.  A high-efficiency cyanine dye for dye-sensitized solar cells , 2008 .

[10]  Roland Hany,et al.  Enhanced cyanine solar cell performance upon oxygen doping , 2008 .

[11]  F. Castro,et al.  Improved performance of cyanine solar cells with polyaniline anodes , 2010 .

[12]  P. Heremans,et al.  Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. , 2009, Accounts of chemical research.

[13]  C. Herrick Capillary-Fed Meniscus Coating Technique , 1980 .

[14]  Daniel Rauh,et al.  A "cyanine-cyanine" salt exhibiting photovoltaic properties. , 2009, Organic letters.

[15]  H. Bolink,et al.  Ionic space-charge effects in solid state organic photovoltaics. , 2010, ACS applied materials & interfaces.

[16]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[17]  S. Forrest,et al.  Inverted organic photovoltaic cells with high open-circuit voltage , 2010 .

[18]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[19]  Raj René Janssen,et al.  The Energy of Charge‐Transfer States in Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells , 2009 .

[20]  Jerald A. Britten,et al.  A SIMPLE THEORY FOR THE ENTRAINED FILM THICKNESS DURING MENISCUS COATING , 1993 .

[21]  Jianguo Tian,et al.  High‐Performance Solar Cells using a Solution‐Processed Small Molecule Containing Benzodithiophene Unit , 2011, Advanced materials.

[22]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[23]  Sheng-Fu Horng,et al.  Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer , 2010 .