Clique-width of graphs defined by one-vertex extensions
暂无分享,去创建一个
[1] T. Gallai. Transitiv orientierbare Graphen , 1967 .
[2] Andreas Brandstädt,et al. Gem- And Co-Gem-Free Graphs Have Bounded Clique-Width , 2004, Int. J. Found. Comput. Sci..
[3] Jean-Marc Lanlignel. Autour de la décomposition en coupes , 2001 .
[4] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[5] Bruno Courcelle,et al. Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..
[6] Hans-Jürgen Bandelt,et al. Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.
[7] Egon Wanke,et al. k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..
[8] W. Cunningham. Decomposition of Directed Graphs , 1982 .
[9] Michaël Rao,et al. The bi-join decomposition , 2005, Electron. Notes Discret. Math..
[10] Peter L. Hammer,et al. Completely separable graphs , 1990, Discret. Appl. Math..
[11] Derek G. Corneil,et al. Complement reducible graphs , 1981, Discret. Appl. Math..
[12] Paul D. Seymour,et al. Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.
[13] Frank Gurski. Characterizations for restricted graphs of NLC-width 2 , 2007, Theor. Comput. Sci..
[14] Udi Rotics,et al. On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..
[15] David P. Sumner. Graphs indecomposable with respect to the X-join , 1973, Discret. Math..
[16] B. Mohar,et al. Graph Minors , 2009 .