Clique-width of graphs defined by one-vertex extensions

Let G be a graph and u be a vertex of G. We consider the following operation: add a new vertex v such that v does not distinguish any two vertices which are not distinguished by u. We call this operation a one-vertex extension. Adding a true twin, a false twin or a pendant vertex are cases of one-vertex extensions. Here we are interested in graph classes defined by a subset of allowed one-vertex extension. Examples are trees, cographs and distance-hereditary graphs. We give a complete classification of theses classes with respect to their clique-width. We also introduce a new graph parameter called the modular-width, and we give a relation with the clique-width.

[1]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[2]  Andreas Brandstädt,et al.  Gem- And Co-Gem-Free Graphs Have Bounded Clique-Width , 2004, Int. J. Found. Comput. Sci..

[3]  Jean-Marc Lanlignel Autour de la décomposition en coupes , 2001 .

[4]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[5]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[6]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[7]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[8]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[9]  Michaël Rao,et al.  The bi-join decomposition , 2005, Electron. Notes Discret. Math..

[10]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..

[11]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[12]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[13]  Frank Gurski Characterizations for restricted graphs of NLC-width 2 , 2007, Theor. Comput. Sci..

[14]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[15]  David P. Sumner Graphs indecomposable with respect to the X-join , 1973, Discret. Math..

[16]  B. Mohar,et al.  Graph Minors , 2009 .