Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms

[1]  T. Schaub,et al.  Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: Effect on biovolume yields, lipid content and composition, and invasive organisms , 2014 .

[2]  Wiebke J. Boeing,et al.  pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms , 2014, Journal of Applied Phycology.

[3]  Yaoyang Xu,et al.  Modeling maximum lipid productivity of microalgae: Review and next step , 2014 .

[4]  A. Tripati,et al.  Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals , 2014 .

[5]  T. Schaub,et al.  Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms , 2013 .

[6]  Alberto Bertucco,et al.  Photobioreactors for microalgal growth and oil production with Nannochloropsis salina: From lab-scale experiments to large-scale design , 2012 .

[7]  Reza Ranjbar,et al.  Large-scale biodiesel production using microalgae biomass of Nannochloropsis. , 2012 .

[8]  Michael H. Huesemann,et al.  Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina , 2012 .

[9]  Edward J. Wolfrum,et al.  Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification , 2012, Analytical and Bioanalytical Chemistry.

[10]  Peter J. Lammers,et al.  Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel , 2012 .

[11]  Jeffrey Philip Obbard,et al.  Screening of marine microalgae for biodiesel feedstock , 2011 .

[12]  Alex C. MacRae,et al.  A Comprehensive GC–MS Sub-Microscale Assay for Fatty Acids and its Applications , 2011, Journal of the American Oil Chemists' Society.

[13]  R. Glud,et al.  Growth limitation of three Arctic sea ice algal species: effects of salinity, pH, and inorganic carbon availability , 2011, Polar Biology.

[14]  Navid R. Moheimani,et al.  Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures , 2011, Applied Microbiology and Biotechnology.

[15]  S. Harrison,et al.  Selection of Direct Transesterification as the Preferred Method for Assay of Fatty Acid Content of Microalgae , 2010, Lipids.

[16]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[17]  Craig Frear,et al.  Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level , 2009, Applied Microbiology and Biotechnology.

[18]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[19]  K. Gao,et al.  Response of Growth and Fatty Acid Compositions of Nannochloropsis sp. to Environmental Factors Under Elevated CO2 Concentration , 2006, Biotechnology Letters.

[20]  Arsène Isambert,et al.  Optimization of Nannochloropsis oculata growth using the response surface method , 2006 .

[21]  Xining Chen,et al.  Differential responses of eight cyanobacterial and green algal species, to carbamate insecticides. , 2006, Ecotoxicology and environmental safety.

[22]  M. Henriques,et al.  Growth aspects of the marine microalga Nannochloropsis gaditana. , 2003, Biomolecular engineering.

[23]  Graziella Chini Zittelli,et al.  Mass cultivation of Nannochloropsis sp. in annular reactors , 2003, Journal of Applied Phycology.

[24]  Brian D. Inouye,et al.  RESPONSE SURFACE EXPERIMENTAL DESIGNS FOR INVESTIGATING INTERSPECIFIC COMPETITION , 2001 .

[25]  F. García-Camacho,et al.  Biomass nutrient profiles of the microalga Nannochloropsis. , 2001, Journal of agricultural and food chemistry.

[26]  A. Richmond,et al.  An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae) , 2001 .

[27]  A. Richmond,et al.  Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. , 2001, Journal of biotechnology.

[28]  J. Grimalt,et al.  SALINITY TOLERANCE OF DIATOMS FROM THALASSIC HYPERSALINE ENVIRONMENTS , 2000 .

[29]  Mario R. Tredici,et al.  A Modular Flat Panel Photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp. under artificial illumination , 2000, Journal of Applied Phycology.

[30]  Tawfiq S. Abu-Rezq,et al.  Optimum production conditions for different high-quality marine algae , 1999, Hydrobiologia.

[31]  D. Parry,et al.  Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae , 1994, Journal of Applied Phycology.

[32]  E. Becker Microalgae: Biotechnology and Microbiology , 1994 .

[33]  Y. Carmeli,et al.  Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II: Nannochloropsis sp. , 1993 .

[34]  S. W. Jeffrey,et al.  The gross and amino acid compositions of batch and semi-continuous cultures ofIsochrysis sp. (clone T.ISO),Pavlova lutheri andNannochloropsis oculata , 1993, Journal of Applied Phycology.

[35]  Paul G. Roessler,et al.  ENVIRONMENTAL CONTROL OF GLYCEROLIPID METABOLISM IN MICROALGAE: COMMERCIAL IMPLICATIONS AND FUTURE RESEARCH DIRECTIONS , 1990 .

[36]  Ulrich Sommer,et al.  The PEG-model of seasonal succession of planktonic events in fresh waters , 1986, Archiv für Hydrobiologie.

[37]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[38]  S. R. Searle,et al.  Applied Linear Regression Models, 2nd edition , 2016 .

[39]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[40]  Meng Chen,et al.  Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. , 2011, Bioresource technology.

[41]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[42]  L. Rodolfi,et al.  Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor , 2009, Biotechnology and bioengineering.

[43]  Yuk Shan Wong,et al.  Wastewater Treatment with Algae , 1998, Biotechnology Intelligence Unit.

[44]  C. Chen,et al.  Effects of pH on the growth and carbon uptake of marine phytoplankton , 1994 .

[45]  C. Waddington,et al.  Limits of Growth , 1972, Nature.

[46]  J. H. Ryther,et al.  Studies of marine planktonic diatoms , 1962 .