Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization

[1]  M. Winterhalter Lipid membranes in external electric fields: kinetics of large pore formation causing rupture. , 2014, Advances in colloid and interface science.

[2]  R. Benz,et al.  Discovery of a cell wall porin in the mycolic‐acid‐containing actinomycete Dietzia marisDSM 43672 , 2014, The FEBS journal.

[3]  Vivek V. Thacker,et al.  Lipid-Bilayer-Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor , 2013, Angewandte Chemie.

[4]  T. Heimburg,et al.  Lipid ion channels and the role of proteins. , 2013, Accounts of chemical research.

[5]  S. Piersma,et al.  Differential Detergent Extraction of Mycobacterium marinum Cell Envelope Proteins Identifies an Extensively Modified Threonine-Rich Outer Membrane Protein with Channel Activity , 2013, Journal of bacteriology.

[6]  U. Keyser,et al.  Lipid nanobilayers to host biological nanopores for DNA translocations. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[7]  S. Nussberger,et al.  Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level. , 2013, The journal of physical chemistry letters.

[8]  M. Winterhalter,et al.  Peptide translocation through the mesoscopic channel: binding kinetics at the single molecule level , 2012, European Biophysics Journal.

[9]  R. Benz,et al.  Pulling peptides across nanochannels: resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica. , 2012, ACS nano.

[10]  M. Winterhalter,et al.  Computational modeling of ion transport through nanopores. , 2012, Nanoscale.

[11]  T. Heimburg,et al.  Voltage-Gated Lipid Ion Channels , 2012, PloS one.

[12]  M. Winterhalter,et al.  Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current , 2012, The Journal of general physiology.

[13]  T. Heimburg,et al.  Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels. , 2011, Biochimica et biophysica acta.

[14]  O. Otto,et al.  Simple reconstitution of protein pores in nano lipid bilayers. , 2011, Nano letters.

[15]  S. Stolte,et al.  Permeation through nanochannels: revealing fast kinetics , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  M. L. López,et al.  Critical assessment of OmpF channel selectivity: merging information from different experimental protocols , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  R. Kawano,et al.  Quartz nanopore membranes for suspended bilayer ion channel recordings. , 2010, Analytical chemistry.

[18]  Eric Hajjar,et al.  Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli--when binding does not imply translocation. , 2010, The journal of physical chemistry. B.

[19]  T. Heimburg,et al.  Lipid ion channels. , 2010, Biophysical chemistry.

[20]  M. Winterhalter,et al.  Understanding ion conductance on a molecular level: an all-atom modeling of the bacterial porin OmpF. , 2009, Biophysical journal.

[21]  M. Winterhalter,et al.  Antibiotic translocation through membrane channels: temperature-dependent ion current fluctuation for catching the fast events , 2009, European Biophysics Journal.

[22]  L. Movileanu,et al.  Transport at the nanoscale: temperature dependence of ion conductance , 2008, European Biophysics Journal.

[23]  H. Bayley,et al.  Catalyzing the translocation of polypeptides through attractive interactions. , 2007, Journal of the American Chemical Society.

[24]  Susan Daniel,et al.  Single ion-channel recordings using glass nanopore membranes. , 2007, Journal of the American Chemical Society.

[25]  K. El Kirat,et al.  Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy. , 2007, Colloids and surfaces. B, Biointerfaces.

[26]  H. Bayley,et al.  Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording , 2006, Nature chemical biology.

[27]  Michael George,et al.  High-resolution electrophysiology on a chip: Transient dynamics of alamethicin channel formation. , 2006, Biochimica et biophysica acta.

[28]  A. Wiese,et al.  Inner field compensation as a tool for the characterization of asymmetric membranes and Peptide-membrane interactions. , 2004, Biophysical journal.

[29]  M. Winterhalter,et al.  Probing the Orientation of Reconstituted Maltoporin Channels at the Single-protein Level* , 2003, Journal of Biological Chemistry.

[30]  R. Benz,et al.  CymA of Klebsiella oxytoca outer membrane: binding of cyclodextrins and study of the current noise of the open channel. , 2003, Biophysical journal.

[31]  Ichiro Yamato,et al.  Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. , 2003, Biophysical chemistry.

[32]  G. Schwarz,et al.  On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence. , 2003, Biophysical journal.

[33]  A. Wiese,et al.  Pore Formation and Function of Phosphoporin PhoE of Escherichia coli Are Determined by the Core Sugar Moiety of Lipopolysaccharide* , 2002, The Journal of Biological Chemistry.

[34]  A. Petrov,et al.  Flexoelectricity of model and living membranes. , 2002, Biochimica et biophysica acta.

[35]  Horst Vogel,et al.  Chip based biosensor for functional analysis of single ion channels , 2000 .

[36]  Mathias Winterhalter,et al.  Giant Free-Standing ABA Triblock Copolymer Membranes , 2000 .

[37]  S. Bezrukov,et al.  Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. , 2000, Physical review letters.

[38]  M. Winterhalter,et al.  Interaction of the effector domain of MARCKS and MARCKS-related protein with lipid membranes revealed by electric potential measurements. , 1998, Biochemistry.

[39]  G. Mosser,et al.  Detergent removal by non-polar polystyrene beads , 1998, European Biophysics Journal.

[40]  R. Benz,et al.  Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. , 1994, Biophysical journal.

[41]  H. Nikaido,et al.  Porins and specific channels of bacterial outer membranes , 1992, Molecular microbiology.

[42]  O. Krasilnikov,et al.  The structure of Staphylococcus aureus alpha-toxin-induced ionic channel. , 1988, General physiology and biophysics.

[43]  M. Brullemans,et al.  Influence of torus on the capacitance of asymmetrical phospholipid bilayers. , 1987, Biophysical chemistry.

[44]  R. Benz,et al.  Pore formation by LamB of Escherichia coli in lipid bilayer membranes , 1986, Journal of bacteriology.

[45]  G. Boheim,et al.  Ion channel reconstitution into lipid bilayer membranes on glass patch pipettes , 1984 .

[46]  M. Blank Physical Chemistry of Transmembrane Ion Motions. : G. Spach (Editor). Elsevier, New York, 1983, xvii + 656 pp., price $138.50 Dfl. 325.00, ISBN 0-444-42176-9. , 1984 .

[47]  R. Latorre,et al.  Phospholipid bilayers made from monolayers on patch-clamp pipettes. , 1983, Biophysical journal.

[48]  M. Montal,et al.  Functional reassembly of membrane proteins in planar lipid bilayers , 1981, Quarterly Reviews of Biophysics.

[49]  H. Nikaido,et al.  Diffusion of solutes through channels produced by phage lambda receptor protein of Escherichia coli: inhibition by higher oligosaccharides of maltose series. , 1980, Biochemical and biophysical research communications.

[50]  V. V. Petrov,et al.  The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature , 1980, Nature.

[51]  S. Chan,et al.  Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. , 1979, Biochimica et biophysica acta.

[52]  R. Benz,et al.  Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. , 1978, Biochimica et biophysica acta.

[53]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[54]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. O. Rudin,et al.  Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System , 1962, Nature.

[56]  A. Morita Free Energy Calculation , 2013 .

[57]  R. Benz,et al.  Optical and electrical properties of thin monoolein lipid bilayers , 2005, The Journal of Membrane Biology.

[58]  Mathias Winterhalter,et al.  Stabilization of planar lipid membranes: A stratified layer approach , 2000 .

[59]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .