Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs
暂无分享,去创建一个
[1] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[2] D. Ornstein,et al. The ergodic theoretical proof of Szemerédi's theorem , 1982 .
[3] L. Lovász,et al. Annals of Discrete Mathematics , 1986 .
[4] Fan Chung Graham,et al. Quasi-random graphs , 1988, Comb..
[5] Fan Chung Graham,et al. Quasi-Random Hypergraphs , 1990, Random Struct. Algorithms.
[6] R. Graham,et al. Quasi-random subsets of Z n , 1992 .
[7] Vojtech Rödl,et al. The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..
[8] W. T. Gowers,et al. A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .
[9] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[10] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[11] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[12] J. Solymosi. Note on a Generalization of Roth’s Theorem , 2003 .
[13] József Solymosi,et al. A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.
[14] B. Sudakov,et al. Pseudo-random Graphs , 2005, math/0503745.
[15] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.