Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation
暂无分享,去创建一个
Koichi Iwamoto | Nobuhiro Kishimoto | Hideyuki Umeda | Ken'ichi Nomoto | Friedrich-Karl Thielemann | W. Raphael Hix | K. Nomoto | W. Hix | K. Iwamoto | H. Umeda | Friedrich-Karl Thielemann | F. Brachwitz | F. Brachwitz | N. Kishimoto
[1] A. Renzini. Supernovae and Supernova Remnants: Searching for Type Ia Supernova Progenitors , 1996 .
[2] M. Phillips,et al. THE LIGHT CURVE OF THE PLATEAU TYPE II SN 1983K , 1990 .
[3] V. S. Dhillon,et al. An early-time infrared and optical study of the Type IA supernovae SN 1994D and 1991T , 1996 .
[4] I. Iben. More on carbon burning in electron-degenerate matter: within single stars of intermediate mass and within accreting white dwarfs. , 1982 .
[5] Friedrich-Karl Thielemann,et al. Silicon Burning. II. Quasi-Equilibrium and Explosive Burning , 1998, astro-ph/9808203.
[6] A New Evolutionary Path to Type Ia Supernovae: A Helium-rich Supersoft X-Ray Source Channel , 1999, astro-ph/9902303.
[7] K. Nomoto,et al. Possible models for the Type Ia supernova 1990N , 1992 .
[8] S. Woosley,et al. Low-Density Graphite Grains and Mixing in Type II Supernovae , 1999 .
[9] M. Goldsmith. New reports make recommendations, ask for resources to stem TB epidemic. , 1993, JAMA.
[10] Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.
[11] T. H. Wood,et al. Luminous Supersoft X-Ray Sources as Type Ia Progenitors , 1997 .
[12] R. Kirshner,et al. Premaximum observations of the type Ia SN 1990N , 1991 .
[13] Izumi Hachisu,et al. A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .
[14] Z. Barkat,et al. The convective Urca mechanism , 1990 .
[15] S. Bergh,et al. Galactic and extragalactic super-novae rates , 1991 .
[16] K. Nomoto. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .
[17] D. Jeffery,et al. Nebular Spectra of Type Ia Supernovae , 1997 .
[18] R. Kirshner,et al. ASCA observations of the Large Magellanic Cloud supernova remnant sample: Typing supernovae from their remnants , 1995 .
[19] R. Ellis,et al. Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z greater than or equal to 0.35 , 1996, astro-ph/9608192.
[20] B. Pagel,et al. Chemical evolution of primary elements in the Galactic disc: an analytical model , 1995 .
[21] Virginia Trimble. The origin and abundances of the chemical elements , 1975 .
[22] Type Ia supernovae: their origin and possible applications in cosmology. , 1997, Science.
[23] A. R. Kerstein,et al. Burning regimes of nuclear flames in SN Ia explosions , 1997 .
[24] Alexei M. Khokhlov,et al. Propagation of Turbulent Flames in Supernovae , 1995 .
[25] T. Beers,et al. Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy , 1996 .
[26] M. Hashimoto. Supernova Nucleosynthesis in Massive Stars , 1995 .
[27] I. Iben,et al. Carbon ignition in a rapidly accreting degenerate dwarf - A clue to the nature of the merging process in close binaries. , 1985 .
[28] Type Ia supernovae and the Hubble constant , 1972, astro-ph/9801065.
[29] Department of Physics,et al. Nucleosynthesis in type Ia supernovae , 1997 .
[30] W. Arnett,et al. Explosions of Sub--Chandrasekhar Mass White Dwarfs in Two Dimensions , 1995 .
[31] K. Nomoto,et al. Carbon deflagration supernova, an alternative to carbon detonation , 1976 .
[32] F. Käppeler,et al. Neutron capture cross sections for s-process studies , 1987 .
[33] S. Woosley,et al. Off-Center Deflagrations In Chandrasekhar Mass SN Ia Models , 1996, astro-ph/9605169.
[34] U. Hwang,et al. The X-Ray Iron Emission from Tycho's Supernova Remnant , 1997, astro-ph/9712241.
[35] S. Woosley,et al. Search for Important Weak Interaction Nuclei in Presupernova Evolution , 1994 .
[36] M. Liberman,et al. THERMAL-INSTABILITY AND PULSATIONS OF THE FLAME FRONT IN WHITE-DWARFS , 1995 .
[37] R. Webbink. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .
[38] S. E. Woosley,et al. The conductive propagation of nuclear flames. I. Degenerate C+O and O+ Ne + Mg white dwarfs , 1992 .
[39] K. Nomoto. Accreting white dwarf models for type 1 supernovae. II - Off-center detonation supernovae , 1982 .
[40] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[41] W. Fowler,et al. Thermonuclear reaction rates V , 1988 .
[42] W. Hillebrandt,et al. Turbulence and Thermonuclear Burning , 1997 .
[43] Thomas A. Weaver,et al. The Physics of Supernova Explosions , 1986 .
[44] K. Nomoto,et al. Presupernova evolution of massive stars , 1988 .
[45] K. Nomoto,et al. Nucleosynthesis in SNE Ia and Their Impact on Galactic Evolution , 1997 .
[46] S. Woosley,et al. Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .
[47] K. Nomoto,et al. The Lifetime of Type Ia Supernova Progenitors Deduced from the Chemical Evolution in the Solar Neighborhood , 1996 .
[48] S. Woosley,et al. Nucleosynthesis in neutron-rich supernova ejecta , 1985 .
[49] W. Arnett,et al. The delayed-detonation model of Type Ia supernovae. 2: The detonation phase , 1994 .
[50] R. Di Stefano,et al. Formation and evolution of luminous supersoft X-ray sources , 1994 .
[51] F. Thielemann,et al. Silicon Burning. I. Neutronization and the Physics of Quasi-Equilibrium , 1995, astro-ph/9511088.
[52] K. Nomoto,et al. Inward Propagation of Nuclear-burning Shells in Merging C-O and He White Dwarfs , 1998, astro-ph/9801084.
[53] Toshikazu Shigeyama,et al. Late Detonation Models for the Type IA Supernovae SN 1991T and SN 1990N , 1992 .
[54] Wolfgang Hillebrandt,et al. Turbulent Nuclear Flames in Type IA Supernovae , 1995 .
[55] W. Fowler,et al. Stellar weak interaction rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values , 1985 .
[56] J. Wheeler,et al. Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, and Spectra and Consequences for the Determination of ΩM and Λ , 1997, astro-ph/9709233.
[57] K. Nomoto,et al. To appear in the Astrophysical Journal, Letter Preprint typeset using L ATEX style emulateapj LOW-METALLICITY INHIBITION OF TYPE IA SUPERNOVAE AND GALACTIC AND COSMIC CHEMICAL EVOLUTION , 1998 .
[58] F. Thielemann,et al. Reaction rates and reaction sequences in the rp-process , 1994 .
[59] R. Canal. The Paths to White Dwarf Explosion/Collapse , 1997 .
[60] W. Fowler,et al. Stellar weak interaction rates for intermediate mass nuclei. III. Rate tables for the free nucleons and nuclei with A = 21 TO A = 60 , 1982 .
[61] Adam G. Riess,et al. BVRI Light Curves for 22 Type Ia Supernovae , 1998 .
[62] Yuzuru Yoshii,et al. Relative frequencies of Type Ia and Type II supernovae in the chemical evolution of the Galaxy, LMC and SMC , 1995 .
[63] Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars , 1998, astro-ph/9809307.
[64] B. Meyer,et al. 48Ca Production in Matter Expanding from High Temperature and Density , 1996 .
[65] J. Voelkening,et al. Iron isotope anomalies , 1989 .
[66] W. Fowler,et al. Stellar weak-interaction rates for sd-shell nuclei. I - Nuclear matrix element systematics with application to Al-26 and selected nuclei of importance to the supernova problem , 1980 .
[67] P. Nugent,et al. Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae , 1996, astro-ph/9612044.
[68] J. Truran,et al. Thermonuclear reactions at high temperatures and densities. , 1987 .
[69] K. Nomoto,et al. Evolution of 3-9 M☉ Stars for Z = 0.001-0.03 and Metallicity Effects on Type Ia Supernovae , 1998, astro-ph/9806336.
[70] Claudia Winge,et al. SN 1992A : ultraviolet and optical studies based on HST, IUE and CTIO observations , 1993 .
[71] S. Woosley,et al. The Thermonuclear Explosion of Chandrasekhar Mass White Dwarfs , 1996, astro-ph/9607032.
[72] E. Anders,et al. Interstellar SiC in the Murchison and Murray meteorites - Isotopic composition of Ne, Xe, Si, C, and N , 1989 .
[73] Nicholas B. Suntzeff,et al. A Hubble diagram of distant type IA supernovae , 1993 .
[74] A. V. Tutukov,et al. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .
[75] Masa-Aki Hashimoto,et al. Core-Collapse Supernovae and Their Ejecta , 1995 .
[76] David Branch,et al. Type Ia Supernovae as Standard Candles , 1993 .
[77] Yoji Kondo,et al. Conditions for accretion-induced collapse of white dwarfs , 1991 .
[78] E. Livne. Numerical simulations of the convective flame in white dwarfs , 1993 .
[79] D. Branch. The Optical Spectrum of a Carbon-Deflagration Supernova , 1985 .
[80] E. Anders,et al. Meteorites and the Early Solar System , 1971 .
[81] I. Hachisu,et al. A Wide Symbiotic Channel to Type Ia Supernovae , 1999, astro-ph/9902304.
[82] David Branch,et al. IN SEARCH OF THE PROGENITORS OF TYPE IA SUPERNOVAE , 1995 .
[83] R. Kirshner,et al. Analysis of the photospheric epoch spectra of type 1a supernovae SN 1990N and SN 1991T , 1992 .
[84] S. Woosley. Type Ia Supernovae: Flame Physics and Models , 1997 .
[85] P. Ruiz-Lapuente. The Late-Time Emission of Thermonuclear Supernovae , 1997 .
[86] S. Woosley. Neutron-rich Nucleosynthesis in Carbon Deflagration Supernovae , 1997 .
[87] P. Hoeflich,et al. Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996 .
[88] B. Pagel,et al. Galactic chemical evolution of primary elements in the solar neighbourhood — II. Elements affected by the s-process , 1997 .
[89] J. Craig Wheeler,et al. Deflagration-to-Detonation Transition in Thermonuclear Supernovae , 1996 .
[90] J. Cowan,et al. Production of heavy elements in inhomogeneous cosmologies , 1994 .
[91] Type la Supernovae: Mechanisms and Nucleosynthesis , 1996 .
[92] R. D. Loss,et al. Zinc isotope anomalies in Allende meteorite inclusions , 1990 .
[93] S. Ichimaru. Nuclear fusion in dense plasmas , 1993 .