Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation

The major uncertainties involved in the Chandrasekhar mass models for Type Ia supernovae (SNe Ia) are related to the companion star of their accreting white dwarf progenitor (which determines the accretion rate and consequently the carbon ignition density) and the flame speed after the carbon ignition. We calculate explosive nucleosynthesis in relatively slow deflagrations with a variety of deflagration speeds and ignition densities to put new constraints on the above key quantities. The abundance of the Fe group, in particular of neutron-rich species like 48Ca,50Ti,54Cr,54,58Fe, and 58Ni, is highly sensitive to the electron captures taking place in the central layers. The yields obtained from such a slow central deflagration, and from a fast deflagration or delayed detonation in the outer layers, are combined and put to comparison with solar isotopic abundances. To avoid excessively large ratios of 54Cr/56Fe and 50Ti/56Fe, the central density of the average white dwarf progenitor at ignition should be as low as 2 ? 109 g cm-3. To avoid the overproduction of 58Ni and 54Fe, either the flame speed should not exceed a few percent of the sound speed in the central low Ye layers or the metallicity of the average progenitors has to be lower than solar. Such low central densities can be realized by a rapid accretion as fast as -->img1.gif 1 ? 10-7 M? yr-1. In order to reproduce the solar abundance of 48Ca, one also needs progenitor systems that undergo ignition at higher densities. Even the smallest laminar flame speeds after the low-density ignitions would not produce sufficient amount of this isotope. We also found that the total amount of 56Ni, the Si-Ca/Fe ratio, and the abundance of some elements like Mn and Cr (originating from incomplete Si burning), depend on the density of the deflagration-detonation transition in delayed detonations. Our nucleosynthesis results favor transition densities slightly below 2.2 ? 107 g cm-3.

[1]  A. Renzini Supernovae and Supernova Remnants: Searching for Type Ia Supernova Progenitors , 1996 .

[2]  M. Phillips,et al.  THE LIGHT CURVE OF THE PLATEAU TYPE II SN 1983K , 1990 .

[3]  V. S. Dhillon,et al.  An early-time infrared and optical study of the Type IA supernovae SN 1994D and 1991T , 1996 .

[4]  I. Iben More on carbon burning in electron-degenerate matter: within single stars of intermediate mass and within accreting white dwarfs. , 1982 .

[5]  Friedrich-Karl Thielemann,et al.  Silicon Burning. II. Quasi-Equilibrium and Explosive Burning , 1998, astro-ph/9808203.

[6]  A New Evolutionary Path to Type Ia Supernovae: A Helium-rich Supersoft X-Ray Source Channel , 1999, astro-ph/9902303.

[7]  K. Nomoto,et al.  Possible models for the Type Ia supernova 1990N , 1992 .

[8]  S. Woosley,et al.  Low-Density Graphite Grains and Mixing in Type II Supernovae , 1999 .

[9]  M. Goldsmith New reports make recommendations, ask for resources to stem TB epidemic. , 1993, JAMA.

[10]  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[11]  T. H. Wood,et al.  Luminous Supersoft X-Ray Sources as Type Ia Progenitors , 1997 .

[12]  R. Kirshner,et al.  Premaximum observations of the type Ia SN 1990N , 1991 .

[13]  Izumi Hachisu,et al.  A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .

[14]  Z. Barkat,et al.  The convective Urca mechanism , 1990 .

[15]  S. Bergh,et al.  Galactic and extragalactic super-novae rates , 1991 .

[16]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[17]  D. Jeffery,et al.  Nebular Spectra of Type Ia Supernovae , 1997 .

[18]  R. Kirshner,et al.  ASCA observations of the Large Magellanic Cloud supernova remnant sample: Typing supernovae from their remnants , 1995 .

[19]  R. Ellis,et al.  Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z greater than or equal to 0.35 , 1996, astro-ph/9608192.

[20]  B. Pagel,et al.  Chemical evolution of primary elements in the Galactic disc: an analytical model , 1995 .

[21]  Virginia Trimble The origin and abundances of the chemical elements , 1975 .

[22]  Type Ia supernovae: their origin and possible applications in cosmology. , 1997, Science.

[23]  A. R. Kerstein,et al.  Burning regimes of nuclear flames in SN Ia explosions , 1997 .

[24]  Alexei M. Khokhlov,et al.  Propagation of Turbulent Flames in Supernovae , 1995 .

[25]  T. Beers,et al.  Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy , 1996 .

[26]  M. Hashimoto Supernova Nucleosynthesis in Massive Stars , 1995 .

[27]  I. Iben,et al.  Carbon ignition in a rapidly accreting degenerate dwarf - A clue to the nature of the merging process in close binaries. , 1985 .

[28]  Type Ia supernovae and the Hubble constant , 1972, astro-ph/9801065.

[29]  Department of Physics,et al.  Nucleosynthesis in type Ia supernovae , 1997 .

[30]  W. Arnett,et al.  Explosions of Sub--Chandrasekhar Mass White Dwarfs in Two Dimensions , 1995 .

[31]  K. Nomoto,et al.  Carbon deflagration supernova, an alternative to carbon detonation , 1976 .

[32]  F. Käppeler,et al.  Neutron capture cross sections for s-process studies , 1987 .

[33]  S. Woosley,et al.  Off-Center Deflagrations In Chandrasekhar Mass SN Ia Models , 1996, astro-ph/9605169.

[34]  U. Hwang,et al.  The X-Ray Iron Emission from Tycho's Supernova Remnant , 1997, astro-ph/9712241.

[35]  S. Woosley,et al.  Search for Important Weak Interaction Nuclei in Presupernova Evolution , 1994 .

[36]  M. Liberman,et al.  THERMAL-INSTABILITY AND PULSATIONS OF THE FLAME FRONT IN WHITE-DWARFS , 1995 .

[37]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[38]  S. E. Woosley,et al.  The conductive propagation of nuclear flames. I. Degenerate C+O and O+ Ne + Mg white dwarfs , 1992 .

[39]  K. Nomoto Accreting white dwarf models for type 1 supernovae. II - Off-center detonation supernovae , 1982 .

[40]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[41]  W. Fowler,et al.  Thermonuclear reaction rates V , 1988 .

[42]  W. Hillebrandt,et al.  Turbulence and Thermonuclear Burning , 1997 .

[43]  Thomas A. Weaver,et al.  The Physics of Supernova Explosions , 1986 .

[44]  K. Nomoto,et al.  Presupernova evolution of massive stars , 1988 .

[45]  K. Nomoto,et al.  Nucleosynthesis in SNE Ia and Their Impact on Galactic Evolution , 1997 .

[46]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[47]  K. Nomoto,et al.  The Lifetime of Type Ia Supernova Progenitors Deduced from the Chemical Evolution in the Solar Neighborhood , 1996 .

[48]  S. Woosley,et al.  Nucleosynthesis in neutron-rich supernova ejecta , 1985 .

[49]  W. Arnett,et al.  The delayed-detonation model of Type Ia supernovae. 2: The detonation phase , 1994 .

[50]  R. Di Stefano,et al.  Formation and evolution of luminous supersoft X-ray sources , 1994 .

[51]  F. Thielemann,et al.  Silicon Burning. I. Neutronization and the Physics of Quasi-Equilibrium , 1995, astro-ph/9511088.

[52]  K. Nomoto,et al.  Inward Propagation of Nuclear-burning Shells in Merging C-O and He White Dwarfs , 1998, astro-ph/9801084.

[53]  Toshikazu Shigeyama,et al.  Late Detonation Models for the Type IA Supernovae SN 1991T and SN 1990N , 1992 .

[54]  Wolfgang Hillebrandt,et al.  Turbulent Nuclear Flames in Type IA Supernovae , 1995 .

[55]  W. Fowler,et al.  Stellar weak interaction rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values , 1985 .

[56]  J. Wheeler,et al.  Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, and Spectra and Consequences for the Determination of ΩM and Λ , 1997, astro-ph/9709233.

[57]  K. Nomoto,et al.  To appear in the Astrophysical Journal, Letter Preprint typeset using L ATEX style emulateapj LOW-METALLICITY INHIBITION OF TYPE IA SUPERNOVAE AND GALACTIC AND COSMIC CHEMICAL EVOLUTION , 1998 .

[58]  F. Thielemann,et al.  Reaction rates and reaction sequences in the rp-process , 1994 .

[59]  R. Canal The Paths to White Dwarf Explosion/Collapse , 1997 .

[60]  W. Fowler,et al.  Stellar weak interaction rates for intermediate mass nuclei. III. Rate tables for the free nucleons and nuclei with A = 21 TO A = 60 , 1982 .

[61]  Adam G. Riess,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1998 .

[62]  Yuzuru Yoshii,et al.  Relative frequencies of Type Ia and Type II supernovae in the chemical evolution of the Galaxy, LMC and SMC , 1995 .

[63]  Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars , 1998, astro-ph/9809307.

[64]  B. Meyer,et al.  48Ca Production in Matter Expanding from High Temperature and Density , 1996 .

[65]  J. Voelkening,et al.  Iron isotope anomalies , 1989 .

[66]  W. Fowler,et al.  Stellar weak-interaction rates for sd-shell nuclei. I - Nuclear matrix element systematics with application to Al-26 and selected nuclei of importance to the supernova problem , 1980 .

[67]  P. Nugent,et al.  Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae , 1996, astro-ph/9612044.

[68]  J. Truran,et al.  Thermonuclear reactions at high temperatures and densities. , 1987 .

[69]  K. Nomoto,et al.  Evolution of 3-9 M☉ Stars for Z = 0.001-0.03 and Metallicity Effects on Type Ia Supernovae , 1998, astro-ph/9806336.

[70]  Claudia Winge,et al.  SN 1992A : ultraviolet and optical studies based on HST, IUE and CTIO observations , 1993 .

[71]  S. Woosley,et al.  The Thermonuclear Explosion of Chandrasekhar Mass White Dwarfs , 1996, astro-ph/9607032.

[72]  E. Anders,et al.  Interstellar SiC in the Murchison and Murray meteorites - Isotopic composition of Ne, Xe, Si, C, and N , 1989 .

[73]  Nicholas B. Suntzeff,et al.  A Hubble diagram of distant type IA supernovae , 1993 .

[74]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[75]  Masa-Aki Hashimoto,et al.  Core-Collapse Supernovae and Their Ejecta , 1995 .

[76]  David Branch,et al.  Type Ia Supernovae as Standard Candles , 1993 .

[77]  Yoji Kondo,et al.  Conditions for accretion-induced collapse of white dwarfs , 1991 .

[78]  E. Livne Numerical simulations of the convective flame in white dwarfs , 1993 .

[79]  D. Branch The Optical Spectrum of a Carbon-Deflagration Supernova , 1985 .

[80]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[81]  I. Hachisu,et al.  A Wide Symbiotic Channel to Type Ia Supernovae , 1999, astro-ph/9902304.

[82]  David Branch,et al.  IN SEARCH OF THE PROGENITORS OF TYPE IA SUPERNOVAE , 1995 .

[83]  R. Kirshner,et al.  Analysis of the photospheric epoch spectra of type 1a supernovae SN 1990N and SN 1991T , 1992 .

[84]  S. Woosley Type Ia Supernovae: Flame Physics and Models , 1997 .

[85]  P. Ruiz-Lapuente The Late-Time Emission of Thermonuclear Supernovae , 1997 .

[86]  S. Woosley Neutron-rich Nucleosynthesis in Carbon Deflagration Supernovae , 1997 .

[87]  P. Hoeflich,et al.  Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996 .

[88]  B. Pagel,et al.  Galactic chemical evolution of primary elements in the solar neighbourhood — II. Elements affected by the s-process , 1997 .

[89]  J. Craig Wheeler,et al.  Deflagration-to-Detonation Transition in Thermonuclear Supernovae , 1996 .

[90]  J. Cowan,et al.  Production of heavy elements in inhomogeneous cosmologies , 1994 .

[91]  Type la Supernovae: Mechanisms and Nucleosynthesis , 1996 .

[92]  R. D. Loss,et al.  Zinc isotope anomalies in Allende meteorite inclusions , 1990 .

[93]  S. Ichimaru Nuclear fusion in dense plasmas , 1993 .