Fast robust control of linear systems subject to actuator saturation

This paper deals with the robust stability of soft variable-structure controls. More precisely, the control of linear plants subject to parametric uncertainty and actuator saturation is considered. Earlier works are summarized and new results are presented in this paper. It is shown that for all considered types of soft variable-structure controls, the robustness analysis leads to parameter-dependent Lyapunov inequalities. An overhead crane control is given as an illustrating example.

[1]  Frank Niewels,et al.  Robuste Stabilität einer Klasse strukturvariabler Regelungssysteme (Robust Stability of a Class of Variable Structure Control Systems) , 2003 .

[2]  Jürgen Adamy,et al.  Implicit Lyapunov functions and isochrones of linear systems , 2005, IEEE Transactions on Automatic Control.

[3]  A. Flemming,et al.  Soft variable-structure controls: a survey , 2004, Autom..

[4]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[5]  B. R. Barmish,et al.  A survey of extreme point results for robustness of control systems, , 1993, Autom..

[6]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[7]  H. Horisberger,et al.  Regulators for linear, time invariant plants with uncertain parameters , 1976 .

[8]  S. Bhattacharyya,et al.  Robust control , 1987, IEEE Control Systems Magazine.

[9]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[10]  Frank Niewels,et al.  Robuste Stabilität einer Klasse strukturvariabler Regelungssysteme , 2003 .

[11]  Sophie Tarbouriech,et al.  Control of Uncertain Systems with Bounded Inputs , 1997 .

[12]  F. Garofalo,et al.  Stability robustness of interval matrices via Lyapunov quadratic forms , 1993, IEEE Trans. Autom. Control..

[13]  Francesco Amato,et al.  Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters , 2006 .

[14]  Karolos M. Grigoriadis,et al.  Actuator saturation control , 2002 .