The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers

We study the performance of direct solvers on linear systems of equations resulting from isogeometric analysis. The problem of choice is the canonical Laplace equation in three dimensions. From this study we conclude that for a fixed number of unknowns and polynomial degree of approximation, a higher degree of continuity k drastically increases the CPU time and RAM needed to solve the problem when using a direct solver. This paper presents numerical results detailing the phenomenon as well as a theoretical analysis that explains the underlying cause.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[3]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[4]  David Pardo,et al.  Simulation of marine controlled source electromagnetic measurements using a parallel fourier hp-finite element method , 2011 .

[5]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[6]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[7]  Rudolf A. Römer,et al.  On large‐scale diagonalization techniques for the Anderson model of localization , 2005, SIAM J. Sci. Comput..

[8]  Victor M. Calo,et al.  Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls , 2012 .

[9]  K. S. Surana,et al.  The k-Version of Finite Element Method for Self-Adjoint Operators in BVP , 2002, Int. J. Comput. Eng. Sci..

[10]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[11]  Jack J. Dongarra,et al.  Selected numerical algorithms , 2004, Future generations computer systems.

[12]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[13]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[14]  Vipin Kumar,et al.  Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[15]  Patrick R. Amestoy,et al.  Analysis and comparison of two general sparse solvers for distributed memory computers , 2001, TOMS.

[16]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[17]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[18]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[19]  Victor M. Calo,et al.  Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow , 2008 .

[20]  N. Collier,et al.  The quasi-uniformity condition for reproducing kernel element method meshes , 2009 .

[21]  Jian Cao,et al.  Reproducing kernel element method Part III: Generalized enrichment and applications , 2004 .

[22]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[23]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[24]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[25]  Shaofan Li,et al.  Reproducing kernel element method. Part IV: Globally compatible Cn (n ≥ 1) triangular hierarchy , 2004 .

[26]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[27]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[28]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[29]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[30]  Victor M. Calo,et al.  A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high‐order B‐spline finite elements , 2012 .

[31]  Olaf Schenk,et al.  Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization , 2007, Comput. Optim. Appl..

[32]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[33]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[34]  Weimin Han,et al.  Reproducing kernel element method Part II: Globally conforming Im/Cn hierarchies , 2004 .

[35]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[36]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..