An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry.

[1]  J. Kučera,et al.  Elemental characterization of single-wall carbon nanotube certified reference material by neutron and prompt γ activation analysis. , 2015, Analytical chemistry.

[2]  E. Flores,et al.  Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry , 2015 .

[3]  P. Lantéri,et al.  Development of efficient digestion procedures for quantitative determination of cobalt and molybdenum catalyst residues in carbon nanotubes , 2014 .

[4]  Hui‐Ming Cheng,et al.  The global growth of graphene. , 2014, Nature nanotechnology.

[5]  P. Ajayan,et al.  Imaging molecular adsorption and desorption dynamics on graphene using terahertz emission spectroscopy , 2014, Scientific Reports.

[6]  R. Webster,et al.  Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities. , 2014, Physical chemistry chemical physics : PCCP.

[7]  P. Nellist,et al.  Probing the bonding in nitrogen-doped graphene using electron energy loss spectroscopy. , 2013, ACS nano.

[8]  Chongwu Zhou,et al.  Review of chemical vapor deposition of graphene and related applications. , 2013, Accounts of chemical research.

[9]  C. Tzoganakis,et al.  High yield production and purification of few layer graphene by Gum Arabic assisted physical sonication , 2013, Scientific Reports.

[10]  I. Han,et al.  The synthesis of vertically-aligned carbon nanotubes on an aluminum foil laminated on stainless steel , 2011 .

[11]  Y. Liu,et al.  Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers. , 2011, Journal of nanoscience and nanotechnology.

[12]  J. Warner,et al.  The formation of stacked-cup carbon nanotubes using chemical vapor deposition from ethanol over silica , 2010 .

[13]  M. Kitto,et al.  Evaluation of sample pretreatment methods for multiwalled and single-walled carbon nanotubes for the determination of metal impurities by ICPMS, ICPOES, and instrument neutron activation analysis , 2010 .

[14]  Mukul Kumar,et al.  Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. , 2010, Journal of nanoscience and nanotechnology.

[15]  D. J. Nelson,et al.  Pristine single-walled carbon nanotube purity evaluation by using 1H NMR spectroscopy , 2010, Analytical and bioanalytical chemistry.

[16]  K. Wepasnick,et al.  Chemical and structural characterization of carbon nanotube surfaces , 2010, Analytical and bioanalytical chemistry.

[17]  Hui-Ming Cheng,et al.  Purification of carbon nanotubes , 2008 .

[18]  Wei Li,et al.  Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. , 2008, Analytical chemistry.

[19]  Hyun Chul Lee,et al.  Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes , 2008 .

[20]  Martin Pumera,et al.  Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. , 2008, Small.

[21]  Martin Pumera,et al.  Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[22]  V. Lakshminarayanan,et al.  Simultaneous purification and spectrophotometric determination of nickel present in as-prepared single-walled carbon nanotubes (SWCNT). , 2007, Talanta.

[23]  L. A. Montoro,et al.  A multi-step treatment to effective purification of single-walled carbon nanotubes , 2006 .

[24]  J. Dean Practical Inductively Coupled Plasma Spectroscopy , 2005 .

[25]  T. Belin,et al.  Characterization methods of carbon nanotubes : a review. , 2005 .

[26]  T. Braun,et al.  Determination of traces of elemental impurities in single walled (SWNT) and multi walled (MWNT) pristine and purified carbon nanotubes by instrumental neutron activation analysis , 2004 .

[27]  P. Nikolaev,et al.  Fast characterization of magnetic impurities in single-walled carbon nanotubes , 2003 .

[28]  Robert H. Hauge,et al.  Purification and Characterization of Single-Wall Carbon Nanotubes , 2001 .

[29]  P. Parilla,et al.  A Simple and Complete Purification of Single‐Walled Carbon Nanotube Materials , 1999 .

[30]  T. Braun,et al.  Trace element impurities in C60, C70, and graphite soot , 1995 .

[31]  義雄 大坪,et al.  示差熱分析法による炭酸アルカリー酸化鉄系化合物の熱化学的特性と反応過程の研究(第1~2報) (第1報)Li2CO3-Fe2O3系化合物 , 1961 .

[32]  S. Bysakh,et al.  Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes , 2011 .

[33]  S. Bourdo,et al.  Carbon nanotubes and graphene for solar cells , 2010 .

[34]  P. Nikolaev,et al.  Protocol for the characterization of single-wall carbon nanotube material quality , 2004 .

[35]  Malcolm L. H. Green,et al.  Structural studies of purified double walled carbon nanotubes (DWNTs) using phase restored high-resolution imaging , 2004 .