Test challenges in nanometric CMOS technologies

Abstract The current trends in decreasing the minimum feature sizes in CMOS technologies are producing new failure mechanisms for which the classical test methods become inefficient. This situation causes a growing concern in the design and test communities due to the fact that the advances in integration advance faster than the ability of test specialists in providing the required strategies to test the new circuits. If the current levels of reliability are to be maintained new paradigms to guarantee the quality levels of the future megatransitor chips will be required. In this paper, after reviewing the technology trends in CMOS technologies, the emerging failure mechanisms of these technologies are analyzed. The challenges facing testing in nanometric technologies are explored in terms of voltage test difficulties as well as current test (IDDQ) problems and solutions.

[1]  Chenming Hu,et al.  Future CMOS scaling and reliability , 1993, Proc. IEEE.

[2]  Wojciech Maly,et al.  Current signatures: application , 1997, Proceedings International Test Conference 1997.

[3]  Manoj Sachdev Deep sub-micron I/sub DDQ/ testing: issues and solutions , 1997, Proceedings European Design and Test Conference. ED & TC 97.

[4]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[5]  Wei-Jen Huang,et al.  Hot-carrier-reliability design guidelines for CMOS logic circuits , 1993 .

[6]  Kurt Keutzer,et al.  Getting to the bottom of deep submicron , 1998, ICCAD '98.

[7]  Wojciech Maly,et al.  Design of ICs applying built-in current testing , 1992, J. Electron. Test..

[8]  Doris Schmitt-Landsiedel,et al.  The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits , 1996, ISLPED '96.

[9]  Robert H. Dennard,et al.  CMOS scaling for high performance and low power-the next ten years , 1995, Proc. IEEE.

[10]  F. Joel Ferguson,et al.  Sandia National Labs , 2022 .

[11]  Ih-Chin Chen,et al.  A 1-V programmable DSP for wireless communications [CMOS] , 1997 .

[12]  John M. Acken,et al.  Standard cell library characterization for setting current limits for I/sub DDQ/ testing , 1996, Digest of Papers 1996 IEEE International Workshop on IDDQ Testing.

[13]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[14]  S.M. Menon,et al.  Estimation of partition size for I/sub DDQ/ testing using built-in current sensing , 1997, Digest of Papers IEEE International Workshop on IDDQ Testing.

[15]  C. S. Murthy,et al.  Process variation effects on circuit performance: TCAD simulation of 256-Mbit technology [DRAMs] , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  Shih-Wei Sun,et al.  Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation , 1995 .

[17]  G. Crisenza,et al.  Manufacturability of low power CMOS technology solutions , 1996, Proceedings of 1996 International Symposium on Low Power Electronics and Design.

[18]  S. M. Sze,et al.  Modern semiconductor device physics , 1997 .

[19]  Kenneth M. Butler,et al.  So what is an optimal test mix? A discussion of the SEMATECH methods experiment , 1997, Proceedings International Test Conference 1997.

[20]  Digh Hisamoto,et al.  A low-resistance self-aligned T-shaped gate for high-performance sub-0.1-/spl mu/m CMOS , 1997 .

[21]  Joan Figueras,et al.  Proportional BIC sensor for current testing , 1992, J. Electron. Test..

[22]  Claude Thibeault,et al.  A novel probabilistic approach for IC diagnosis based on differential quiescent current signatures , 1997, Proceedings. 15th IEEE VLSI Test Symposium (Cat. No.97TB100125).

[23]  C. Mead,et al.  Fundamental limitations in microelectronics—I. MOS technology , 1972 .

[24]  Antonio Rubio,et al.  Quiescent current sensor circuits in digital VLSI CMOS testing , 1990 .

[25]  Juan A. Carrasco,et al.  Synthesis of I/sub DDQ/-testable circuits: integrating built-in current sensors , 1995, Proceedings the European Design and Test Conference. ED&TC 1995.

[26]  Kuen-Jong Lee,et al.  A practical current sensing technique for IDDQ testing , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[27]  Robert C. Aitken,et al.  IDDQ and AC scan: the war against unmodelled defects , 1996, Proceedings International Test Conference 1996. Test and Design Validity.

[28]  A.D. Singh A comprehensive wafer oriented test evaluation (WOTE) scheme for the IDDQ testing of deep sub-micron technologies , 1997, Digest of Papers IEEE International Workshop on IDDQ Testing.

[29]  A. Toriumi,et al.  Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's , 1994 .

[30]  G. A. Sai-Halasz,et al.  Performance trends in high-end processors , 1995, Proc. IEEE.

[31]  José Luis Huertas,et al.  Analog and mixed-signal benchmark circuits-first release , 1997, Proceedings International Test Conference 1997.

[32]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[33]  K. Arabi,et al.  Design for testability of embedded integrated operational amplifiers , 1998, IEEE J. Solid State Circuits.

[34]  Carver Mead Scaling of MOS technology to submicrometer feature sizes , 1994, J. VLSI Signal Process..

[35]  Wayne M. Needham,et al.  High volume microprocessor test escapes, an analysis of defects our tests are missing , 1998, Proceedings International Test Conference 1998 (IEEE Cat. No.98CH36270).

[36]  Wojciech Maly,et al.  Built-in current testing , 1992 .

[37]  G. Baccarani,et al.  Generalized scaling theory and its application to a ¼ micrometer MOSFET design , 1984, IEEE Transactions on Electron Devices.

[38]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[39]  Sergio Franco,et al.  Design with Operational Amplifiers and Analog Integrated Circuits , 1988 .