Thermodynamics and phase transition of topological dS black holes with a nonlinear source

We discuss black hole solutions of Einstein-Λ gravity in the presence of nonlinear electrodynamics in dS spacetime. Considering the correlation of the thermodynamic quantities respectively corresponding to the black hole horizon and cosmological horizon of dS spacetime and taking the region between the two horizons as a thermodynamic system, we derive effective thermodynamic quantities of the system according to the first law of thermodynamics, and investigate the thermodynamic properties of the system under the influence of nonlinearity parameter α. It is shown that nonlinearity parameter α influences the position of the black hole horizon and the critical state of the system, and along with electric charge has an effect on the phase structure of the system, which is obvious, especially as the effective temperature is below the critical temperature. The critical phase transition is proved to be second-order equilibrium phase transition by using the Gibbs free energy criterion and Ehrenfest equations.

[1]  M. Momennia,et al.  Critical phenomena and reentrant phase transition of asymptotically Reissner–Nordström black holes , 2021, Physics Letters B.

[2]  N. Bret'on,et al.  Thermodynamics of the Euler-Heisenberg-AdS black hole , 2020, 2009.05904.

[3]  Yasha Neiman,et al.  Higher-spin symmetry vs. boundary locality, and a rehabilitation of dS/CFT , 2020, Journal of High Energy Physics.

[4]  Yang Zhang,et al.  Thermodynamic properties of higher-dimensional dS black holes in dRGT massive gravity , 2020, 2003.05483.

[5]  A. Sheykhi,et al.  Critical behavior of charged dilaton black holes in AdS space , 2020, Physical Review D.

[6]  Robie A. Hennigar,et al.  Thermodynamics of Gauss–Bonnet–de Sitter black holes , 2020, Physical Review D.

[7]  M. Chabab,et al.  On Einstein-non linear-Maxwell-Yukawa de-Sitter black hole thermodynamics , 2020, 2001.01134.

[8]  Li-Chun Zhang,et al.  The entropic force in Reissoner-Nordström-de Sitter spacetime , 2019, Physics Letters B.

[9]  N. Riazi,et al.  Dynamical and thermal stabilities of nonlinearly charged AdS black holes , 2019, The European Physical Journal C.

[10]  Yang Zhang,et al.  Phase transitions and entropy force of charged de Sitter black holes with cloud of string and quintessence , 2019, 1907.11870.

[11]  A. Addazi,et al.  Conformal bootstrap in dS/CFT and topological quantum gravity , 2019, International Journal of Geometric Methods in Modern Physics.

[12]  Seyed Hossein Hendi,et al.  Criticality and extended phase space thermodynamics of AdS black holes in higher curvature massive gravity , 2018, The European Physical Journal C.

[13]  Yu-bo Ma,et al.  Entropy of the electrically charged hairy black holes , 2018, The European Physical Journal C.

[14]  C. H. Nam Non-linear charged dS black hole and its thermodynamics and phase transitions , 2018 .

[15]  Seyed Hossein Hendi,et al.  New aspect of critical nonlinearly charged black hole , 2018, 1803.10767.

[16]  Huaifan Li,et al.  Entropy of higher-dimensional charged Gauss–Bonnet black hole in de Sitter space , 2018, Communications in Theoretical Physics.

[17]  Yu-bo Ma,et al.  Thermodynamics of de Sitter Black Holes in Massive Gravity , 2017, 1708.01520.

[18]  S. Panahiyan,et al.  Einstein–Gauss–Bonnet black holes with a perturbative nonlinear electrodynamics: Geometrical thermodynamics , 2017 .

[19]  R. Mann,et al.  Van der Waals like behavior of topological AdS black holes in massive gravity , 2017, 1702.00432.

[20]  R. Yue,et al.  Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity , 2016, 1612.08056.

[21]  Yu-bo Ma,et al.  The Thermodynamic Relationship between the RN-AdS Black Holes and the RN Black Hole in Canonical Ensemble , 2016, 1612.03518.

[22]  S. Panahiyan,et al.  Geometrical thermodynamics and P–V criticality of the black holes with power-law Maxwell field , 2016, 1612.00721.

[23]  R. Zhao,et al.  Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source , 2016, 1609.08242.

[24]  A. Montakhab,et al.  Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space , 2016, 1607.05333.

[25]  Yu-bo Ma,et al.  Q–$$\Phi $$Φ criticality in the extended phase space of $$(n+1)$$(n+1)-dimensional RN-AdS black holes , 2016, 1607.00793.

[26]  Seyed Hossein Hendi,et al.  Geometrothermodynamics of black holes in Lovelock gravity with a nonlinear electrodynamics , 2015, 1510.06269.

[27]  D. Kubizňák,et al.  Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions , 2015, 1507.08630.

[28]  R. Zhao,et al.  Thermodynamics and phase transition in the Kerr–de Sitter black hole , 2015 .

[29]  S. Panahiyan,et al.  Extended phase space of AdS Black Holes in Einstein-Gauss-Bonnet gravity with a quadratic nonlinear electrodynamics , 2015, 1503.03340.

[30]  Yu-Xiao Liu,et al.  Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition. , 2015, Physical review letters.

[31]  Li-Chun Zhang,et al.  Phase transition and Clapeyron equation of black holes in higher dimensional AdS spacetime , 2014, 1411.3554.

[32]  R. Zhao,et al.  Phase transition of the higher dimensional charged Gauss-Bonnet black hole in de Sitter spacetime , 2014, 1410.5950.

[33]  R. Zhao,et al.  P-V criticality of higher dimensional charged topological dilaton de Sitter black holes , 2014 .

[34]  Meng-Sen Ma Thermodynamics and phase transition of black hole in an asymptotically safe gravity , 2014 .

[35]  Bin Wang,et al.  Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasinormal modes , 2014, 1405.2644.

[36]  Li-Chun Zhang,et al.  The Critical Phenomena and Thermodynamics of the Reissner-Nordstrom-de Sitter Black Hole , 2014 .

[37]  Li-Chun Zhang,et al.  Thermodynamics of phase transition in higher-dimensional Reissner–Nordström–de Sitter black hole , 2014, 1403.2151.

[38]  Gu-Qiang Li,et al.  Another novel Ehrenfest scheme for P–V criticality of RN-AdS black holes , 2014 .

[39]  R. Zhao,et al.  Continuous phase transition and critical behaviors of 3D black hole with torsion , 2014, 1403.0449.

[40]  R. Zhao,et al.  Existence condition and phase transition of Reissner–Nordström–de Sitter black hole , 2013, 1312.0731.

[41]  R. Zhao,et al.  Phase transition and entropy spectrum of BTZ black hole in three-dimensional gravity with torsion , 2013, 1310.1491.

[42]  E. Akhmedov Lecture notes on interacting quantum fields in de Sitter space , 2013, 1309.2557.

[43]  Huaifan Li,et al.  On Thermodynamics of Charged and Rotating Asymptotically AdS Black Strings , 2013 .

[44]  R. Cai,et al.  P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space , 2013, 1306.6233.

[45]  R. Zhao,et al.  On the critical phenomena and thermodynamics of charged topological dilaton AdS black holes , 2013, 1305.3725.

[46]  R. Mann,et al.  Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes , 2013, 1301.5926.

[47]  M. Vahidinia,et al.  Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source , 2012, 1212.6128.

[48]  Xiang Chen VACUUM FLUCTUATION FORCE ON A RIGID CASIMIR CAVITY IN DE SITTER AND SCHWARZSCHILD–DE SITTER SPACE–TIME , 2012, 1211.6068.

[49]  Yu-Xiao Liu,et al.  Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes , 2012, 1209.1707.

[50]  R. Mann,et al.  Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization , 2012, Journal of High Energy Physics.

[51]  Seyed Hossein Hendi,et al.  Asymptotic charged BTZ black hole solutions , 2012, 1405.4941.

[52]  I. Arraut ABOUT THE PROPAGATION OF THE GRAVITATIONAL WAVES IN AN ASYMPTOTICALLY DE SITTER SPACE: COMPARING TWO POINTS OF VIEW , 2012, 1203.4305.

[53]  R. Banerjee,et al.  Thermodynamics of phase transition in higher dimensional AdS black holes , 2011, 1109.2433.

[54]  G. Gibbons,et al.  Black hole enthalpy and an entropy inequality for the thermodynamic volume , 2010, 1012.2888.

[55]  C. Corda,et al.  Inflation from R2 gravity: A new approach using nonlinear electrodynamics , 2010, 1011.4801.

[56]  Sumit Ghosh,et al.  New type of phase transition in Reissner Nordström–AdS black hole and its thermodynamic geometry , 2010, 1008.2644.

[57]  Sujoy K. Modak,et al.  Second order phase transition and thermodynamic geometry in Kerr-AdS black holes , 2010, 1005.4832.

[58]  C. Corda,et al.  REMOVING BLACK HOLE SINGULARITIES WITH NONLINEAR ELECTRODYNAMICS , 2009, 0905.3298.

[59]  Sourya Ray,et al.  Enthalpy and the mechanics of AdS black holes , 2009, 0904.2765.

[60]  H. Saida,et al.  The mechanical first law of black hole spacetimes with a cosmological constant and its application to the Schwarzschild–de Sitter spacetime , 2009, 0903.4230.

[61]  Y. Sekiwa Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant , 2006, hep-th/0602269.

[62]  I. Dymnikova Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to general relativity , 2004, gr-qc/0407072.

[63]  R. Cai Cardy–Verlinde formula and thermodynamics of black holes in de Sitter spaces , 2001, hep-th/0112253.

[64]  E. Ay'on-Beato,et al.  New regular black hole solution from nonlinear electrodynamics , 1999, hep-th/9911174.

[65]  Alberto A. Garćıa,et al.  Non-Singular Charged Black Hole Solution for Non-Linear Source , 1999, gr-qc/9911084.

[66]  M. Novello,et al.  Nonlinear electrodynamics and FRW cosmology , 1998, gr-qc/9806076.

[67]  H. Soleng,et al.  Charged black points in general relativity coupled to the logarithmic U(1) gauge theory. , 1995, Physical review. D, Particles and fields.

[68]  R. Leigh Dirac-Born-Infeld Action from Dirichlet Sigma Model , 1989 .

[69]  A. Tseytlin,et al.  Partition-function representation for the open superstring effective action: . Cancellation of Möbius infinites and derivative corrections to Born-Infeld lagrangian , 1988 .

[70]  E. Fradkin,et al.  Non-linear electrodynamics from quantized strings , 1985 .

[71]  D. Page,et al.  Thermodynamics of black holes in anti-de Sitter space , 1983 .

[72]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[73]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[74]  Jacob D. Bekenstein,et al.  Extraction of energy and charge from a black hole , 1973 .

[75]  B. Hoffmann Gravitational and Electromagnetic Mass in the Born-Infeld Electrodynamics , 1935 .