On the Hopf-Pitchfork bifurcation in the Chua's equation

We study some periodic and quasiperiodic behaviors exhibited by the Chua's equation with a cubic nonlinearity, near a Hopf–pitchfork bifurcation. We classify the types of this bifurcation in the nondegenerate cases, and point out the presence of a degenerate Hopf–pitchfork bifurcation. In this degenerate situation, analytical and numerical study shows a diversity of bifurcations of periodic orbits. We find a secondary Hopf bifurcation of periodic orbits, where invariant torus appears. This secondary Hopf bifurcation is bounded by a Takens–Bogdanov bifurcation of periodic orbits. Here, a sequence of period-doubling bifurcations of invariant tori is detected. Resonance phenomena are also analyzed. In the case of strong resonance 1:4, we show a new sequence of period-doubling bifurcations of 4T invariant tori.

[1]  F. Dumortier,et al.  Local Study of Planar Vector Fields: Singularities and Their Unfoldings , 1991 .

[2]  Carlo R. Laing,et al.  Successive homoclinic tangencies to a limit cycle , 1995 .

[3]  Carles Simó,et al.  Towards global models near homoclinic tangencies of dissipative diffeomorphisms , 1998 .

[4]  E. Gamero,et al.  A Tame Degenerate Hopf-Pitchfork Bifurcation in a Modified van der Pol–Duffing Oscillator , 2000 .

[5]  Ioannis G. Kevrekidis,et al.  Bananas and banana splits: a parametric degeneracy in the Hopf bifurcation for maps , 1995 .

[6]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[7]  Alejandro J. Rodríguez-Luis,et al.  A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation , 1999 .

[8]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[9]  Bernd Krauskopf,et al.  Codimension-three unfoldings of reflectionally symmetric planar vector fields , 1997 .

[10]  S. Chow,et al.  Normal Forms and Bifurcation of Planar Vector Fields , 1994 .

[11]  Chai Wah Wu,et al.  LORENZ EQUATION AND CHUA’S EQUATION , 1996 .

[12]  Alejandro J. Rodríguez-Luis,et al.  On a Codimension-Three Unfolding of the Interaction of Degenerate Hopf and Pitchfork Bifurcations , 1999 .

[13]  Vivien Kirk,et al.  Breaking of symmetry in the saddle-node Hopf bifurcation , 1991 .

[14]  A. Andronov,et al.  Qualitative Theory of Second-order Dynamic Systems , 1973 .

[15]  Emilio Freire,et al.  Hypernormal Form for the Hopf-Zero Bifurcation , 1998 .

[16]  P. Hirschberg,et al.  Sbil'nikov-Hopf bifurcation , 1993 .