Finding all maximal efficient faces in multiobjective linear programming

An algorithm for finding the whole efficient set of a multiobjective linear program is proposed. From the set of efficient edges incident to a vertex, a characterization of maximal efficient faces containing the vertex is given. By means of the lexicographic selection rule of Dantzig, Orden and Wolfe, a connectedness property of the set of dual optimal bases associated to a degenerate vertex is proved. An application of this to the problem of enumerating all the efficient edges incident to a degenerate vertex is proposed. Our method is illustrated with numerical examples and comparisons with Armand—Malivert's algorithm show that this new algorithm uses less computer time.

[1]  Joseph G. Ecker,et al.  Finding all efficient extreme points for multiple objective linear programs , 1978, Math. Program..

[2]  J. G. Ecker,et al.  Selecting Subsets from the Set of Nondominated Vectors in Multiple Objective Linear Programming , 1981 .

[3]  T. Gal,et al.  On the structure of the set bases of a degenerate point , 1985 .

[4]  H.-J. Kruse Degeneracy graphs and the neighbourhood problem , 1986 .

[5]  Katta G. Murty,et al.  Faces of a polyhedron , 1985 .

[6]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[7]  Harold P. Benson,et al.  Finding an Initial Efficient Extreme Point for a Linear Multiple Objective Program , 1981 .

[8]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[9]  Marc Roubens,et al.  Multiple criteria decision making , 1994 .

[10]  Ralph E. Steuer,et al.  A revised simplex method for linear multiple objective programs , 1973, Math. Program..

[11]  J. Terno M. Zeleny, Linear Multiobjective Programming. (Lecture Notes in Economics and Mathematical Systems, Vol. 95) X + 220 S. m. 34 Fig. Berlin/Heidelberg/New York 1974. Springer‐Verlag. Preis brosch. DM 20,– , 1975 .

[12]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[13]  T. Gal A general method for determining the set of all efficient solutions to a linear vectormaximum problem , 1977 .

[14]  Heinz Isermann,et al.  The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program , 1977 .

[15]  D. J. White On Computing an Initial Efficient Extreme Point , 1979 .

[16]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[17]  Johan Philip,et al.  Algorithms for the vector maximization problem , 1972, Math. Program..

[18]  M. Zeleny Linear Multiobjective Programming , 1974 .

[19]  J. G. Ecker,et al.  On Computing an Initial Efficient Extreme Point , 1978 .

[20]  P. Armand,et al.  Determination of the efficient set in multiobjective linear programming , 1991 .

[21]  J. Ecker,et al.  Generating all maximal efficient faces for multiple objective linear programs , 1980 .

[22]  Joseph G. Ecker,et al.  Finding efficient points for linear multiple objective programs , 1975, Math. Program..

[23]  P. Yu,et al.  The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .

[24]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[25]  Michel Balinski,et al.  On the graph structure of convex polyhedra in n-space , 1961 .

[26]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .