A reactive flow model for the 3,3′-diamino-4,4′-azoxyfurazan based plastic bonded explosive (PBX 9701)

[1]  Stephen A. Andrews,et al.  Shock to detonation transition of pentaerythritol tetranitrate (PETN) initially pressed to 1.65 g/cm3 , 2021, Journal of Applied Physics.

[2]  S. Jackson,et al.  Detonation performance experiments and modeling for the DAAF-based high explosive PBX 9701 , 2020, Combustion and Flame.

[3]  Tariq D. Aslam,et al.  An extension of high-order shock-fitted detonation propagation in explosives , 2019, J. Comput. Phys..

[4]  D. Dattelbaum,et al.  Shock response of poly[methyl methacrylate] (PMMA) measured with embedded electromagnetic gauges , 2018 .

[5]  T. Aslam Shock temperature dependent rate law for plastic bonded explosives , 2018 .

[6]  Joseph P. Lichthardt,et al.  Evaluation of the Detonation Performance of Insensitive Explosive Formulations Based on 3,3ʹ Diamino-4,4ʹ-Azoxyfurazan (DAAF) and 3-Nitro-1,2,4-Triazol-5-One (NTO) , 2018 .

[7]  T. Aslam The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502 , 2017 .

[8]  Tariq D. Aslam,et al.  High-order shock-fitted detonation propagation in high explosives , 2017, J. Comput. Phys..

[9]  Zhi-rong Suo,et al.  Studies on 3,3′-diamino-4,4′-azofurazan (DAAF) , 2017, Journal of Thermal Analysis and Calorimetry.

[10]  E. Koch Insensitive High Explosives II: 3,3′-Diamino-4,4′-azoxyfurazan (DAAF) , 2016 .

[11]  J. Coe,et al.  Intermolecular stabilization of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) compressed to 20 GPa. , 2014, The journal of physical chemistry. A.

[12]  Mark Wright,et al.  Summary of Booster Development and Qualification Report , 2012 .

[13]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[14]  D. Chavez,et al.  The Development of a New Synthesis Process for 3,3′‐Diamino‐4,4′‐azoxyfurazan (DAAF) , 2010 .

[15]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[16]  Dario Alfè,et al.  PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..

[17]  R. Menikoff Complete EOS for PBX 9502 , 2009 .

[18]  R. R. Alcon,et al.  Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX 9502: Wave forms from embedded gauges and comparison of four different material lots , 2006 .

[19]  D. Scott Stewart,et al.  Equation of state and reaction rate for condensed-phase explosives , 2005 .

[20]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[21]  L. Hill,et al.  Preparation and explosive properties of azo- and azoxy-furazans , 2000 .

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  L. Fried,et al.  CHEETAH: A next generation thermochemical code , 1994 .

[24]  L. M. Barker,et al.  Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire , 1970 .

[25]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Aslam,et al.  AWSD calibration for the HMX based explosive PBX 9501 , 2020 .

[27]  Stephen A. Andrews,et al.  Magpie: A new thermochemical code , 2020 .

[28]  R. Menikoff,et al.  Reactive burn models and ignition & growth concept , 2010 .

[29]  Dean L. Preston,et al.  Model of plastic deformation for extreme loading conditions , 2003 .

[30]  Terry R. Gibbs,et al.  LASL explosive property data , 1980 .

[31]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..