A reactive flow model for the 3,3′-diamino-4,4′-azoxyfurazan based plastic bonded explosive (PBX 9701)
暂无分享,去创建一个
Joseph P. Lichthardt | T. Aslam | J. Coe | J. Leiding | C. Ticknor | C. Bolme | K. Ramos | D. Thompson | E. G. Francois | Matthew A. Price | Pat P. Bowden | E. Francois
[1] Stephen A. Andrews,et al. Shock to detonation transition of pentaerythritol tetranitrate (PETN) initially pressed to 1.65 g/cm3 , 2021, Journal of Applied Physics.
[2] S. Jackson,et al. Detonation performance experiments and modeling for the DAAF-based high explosive PBX 9701 , 2020, Combustion and Flame.
[3] Tariq D. Aslam,et al. An extension of high-order shock-fitted detonation propagation in explosives , 2019, J. Comput. Phys..
[4] D. Dattelbaum,et al. Shock response of poly[methyl methacrylate] (PMMA) measured with embedded electromagnetic gauges , 2018 .
[5] T. Aslam. Shock temperature dependent rate law for plastic bonded explosives , 2018 .
[6] Joseph P. Lichthardt,et al. Evaluation of the Detonation Performance of Insensitive Explosive Formulations Based on 3,3ʹ Diamino-4,4ʹ-Azoxyfurazan (DAAF) and 3-Nitro-1,2,4-Triazol-5-One (NTO) , 2018 .
[7] T. Aslam. The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502 , 2017 .
[8] Tariq D. Aslam,et al. High-order shock-fitted detonation propagation in high explosives , 2017, J. Comput. Phys..
[9] Zhi-rong Suo,et al. Studies on 3,3′-diamino-4,4′-azofurazan (DAAF) , 2017, Journal of Thermal Analysis and Calorimetry.
[10] E. Koch. Insensitive High Explosives II: 3,3′-Diamino-4,4′-azoxyfurazan (DAAF) , 2016 .
[11] J. Coe,et al. Intermolecular stabilization of 3,3'-diamino-4,4'-azoxyfurazan (DAAF) compressed to 20 GPa. , 2014, The journal of physical chemistry. A.
[12] Mark Wright,et al. Summary of Booster Development and Qualification Report , 2012 .
[13] Stefan Grimme,et al. Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..
[14] D. Chavez,et al. The Development of a New Synthesis Process for 3,3′‐Diamino‐4,4′‐azoxyfurazan (DAAF) , 2010 .
[15] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[16] Dario Alfè,et al. PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..
[17] R. Menikoff. Complete EOS for PBX 9502 , 2009 .
[18] R. R. Alcon,et al. Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX 9502: Wave forms from embedded gauges and comparison of four different material lots , 2006 .
[19] D. Scott Stewart,et al. Equation of state and reaction rate for condensed-phase explosives , 2005 .
[20] Karsten W. Jacobsen,et al. An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..
[21] L. Hill,et al. Preparation and explosive properties of azo- and azoxy-furazans , 2000 .
[22] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[23] L. Fried,et al. CHEETAH: A next generation thermochemical code , 1994 .
[24] L. M. Barker,et al. Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire , 1970 .
[25] F. Murnaghan. The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.
[26] T. Aslam,et al. AWSD calibration for the HMX based explosive PBX 9501 , 2020 .
[27] Stephen A. Andrews,et al. Magpie: A new thermochemical code , 2020 .
[28] R. Menikoff,et al. Reactive burn models and ignition & growth concept , 2010 .
[29] Dean L. Preston,et al. Model of plastic deformation for extreme loading conditions , 2003 .
[30] Terry R. Gibbs,et al. LASL explosive property data , 1980 .
[31] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..