Random Enriched Trees with Applications to Random Graphs

We establish limit theorems that describe the asymptotic local and global geometric behaviour of random enriched trees considered up to symmetry. We apply these general results to random unlabelled weighted rooted graphs and uniform random unlabelled $k$-trees that are rooted at a $k$-clique of distinguishable vertices. For both models we establish a Gromov–Hausdorff scaling limit, a Benjamini–Schramm limit, and a local weak limit that describes the asymptotic shape near the fixed root.

[1]  Benedikt Stufler Limits of random tree-like discrete structures , 2016, Probability Surveys.

[2]  Benedikt Stufler,et al.  Unlabelled Gibbs partitions , 2016, Combinatorics, Probability and Computing.

[3]  G. Ray,et al.  Classification of scaling limits of uniform quadrangulations with a boundary , 2016, The Annals of Probability.

[4]  Michael Drmota,et al.  An Asymptotic Analysis of Labeled and Unlabeled k-Trees , 2016, Algorithmica.

[5]  Lukas Daniel Klausner,et al.  Vertex Degrees in Planar Maps , 2016, 1605.04206.

[6]  Minmin Wang Scaling limits for a family of unrooted trees , 2016, 1604.08287.

[7]  Yuting Wen,et al.  The Brownian plane with minimal neck baby universe , 2015, Random Struct. Algorithms.

[8]  L. Addario-Berry,et al.  Joint convergence of random quadrangulations and their cores , 2015, 1503.06738.

[9]  K. Panagiotou,et al.  Scaling limits of random Pólya trees , 2015, 1502.07180.

[10]  Robin Stephenson,et al.  Local Convergence of Large Critical Multi-type Galton–Watson Trees and Applications to Random Maps , 2014, 1412.6911.

[11]  Benedikt Stufler,et al.  The continuum random tree is the scaling limit of unlabeled unrooted trees , 2014, Random Struct. Algorithms.

[12]  Konstantinos Panagiotou,et al.  Scaling Limits of Random Graphs from Subcritical Classes , 2014, 1411.1865.

[13]  C. McDiarmid,et al.  Random graphs from a block class , 2014 .

[14]  Alessandra Caraceni The Scaling Limit of Random Outerplanar Maps , 2014, 1405.1971.

[15]  Bénédicte Haas,et al.  Scaling limits of k-ary growing trees , 2014, 1402.1084.

[16]  Jakob E. Bjornberg,et al.  Recurrence of bipartite planar maps , 2013, 1311.0178.

[17]  Ira M. Gessel,et al.  Counting unlabeled k-trees , 2013, J. Comb. Theory, Ser. A.

[18]  I. Kortchemski,et al.  Percolation on random triangulations and stable looptrees , 2013, 1307.6818.

[19]  Nicolas Curien,et al.  The CRT is the scaling limit of random dissections , 2013, Random Struct. Algorithms.

[20]  I. Kortchemski,et al.  Random stable looptrees , 2013, 1304.1044.

[21]  Laurent M'enard,et al.  Percolation on uniform infinite planar maps , 2013, 1302.2851.

[22]  Marc Noy,et al.  Extremal Parameters in Sub-Critical Graph Classes , 2013, ANALCO.

[23]  Sigurdur Orn Stef'ansson,et al.  Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.

[24]  Andrew Gainer-Dewar,et al.  Γ-Species and the Enumeration of k-Trees , 2012, Electron. J. Comb..

[25]  I. Kortchemski Limit theorems for conditioned non-generic Galton-Watson trees , 2012, 1205.3145.

[26]  Marc Noy,et al.  The maximum degree of random planar graphs , 2012, SODA.

[27]  Nicolas Curien,et al.  A view from infinity of the uniform infinite planar quadrangulation , 2012, 1201.1052.

[28]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[29]  Z. Xue Preface , 2011 .

[30]  Jérémie Bettinelli Scaling Limit of Random Planar Quadrangulations with a Boundary , 2011, 1111.7227.

[31]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[32]  Gr'egory Miermont,et al.  The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.

[33]  J. L. Gall,et al.  Scaling limits of random trees and planar maps , 2011, 1101.4856.

[34]  Svante Janson,et al.  Sub-Gaussian tail bounds for the width and height of conditioned Galton--Watson trees , 2010, 1011.4121.

[35]  T. Jonsson,et al.  Condensation in Nongeneric Trees , 2010, 1009.1826.

[36]  Michael Drmota,et al.  Asymptotic Study of Subcritical Graph Classes , 2010, SIAM J. Discret. Math..

[37]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[38]  B'en'edicte Haas,et al.  Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees , 2010, 1003.3632.

[39]  Marc Noy,et al.  Degree distribution in random planar graphs , 2009, J. Comb. Theory, Ser. A.

[40]  Alexis Darrasse,et al.  Limiting Distribution for Distances in k-Trees , 2009, IWOCA.

[41]  Konstantinos Panagiotou,et al.  The Degree Sequence of Random Graphs from Subcritical Classes† , 2009, Combinatorics, Probability and Computing.

[42]  Marc Noy,et al.  Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.

[43]  Jean-François Marckert,et al.  The CRT is the scaling limit of unordered binary trees , 2009, Random Struct. Algorithms.

[44]  P. Flajolet,et al.  Analytic Combinatorics , 2009 .

[45]  Konstantinos Panagiotou,et al.  Maximal biconnected subgraphs of random planar graphs , 2009, TALG.

[46]  Svante Janson,et al.  Distances between pairs of vertices and vertical profile in conditioned Galton–Watson trees , 2008, Random Struct. Algorithms.

[47]  Konstantinos Panagiotou,et al.  On the Degree Sequences of Random Outerplanar and Series-Parallel Graphs , 2008, APPROX-RANDOM.

[48]  Béla Bollobás,et al.  Sparse random graphs with clustering , 2008, Random Struct. Algorithms.

[49]  Manuel Bodirsky,et al.  Enumeration and Asymptotic Properties of Unlabeled Outerplanar Graphs , 2007, Electron. J. Comb..

[50]  S. Kijima,et al.  Polynomial time perfect sampling algorithm for two-rowed contingency tables (Supported by Superrobust Computation Project of the 21st Century COE Program “Information Science and Technology Strategic Core.”) , 2006 .

[51]  Stanley Burris,et al.  Counting Rooted Trees: The Universal Law t(n)~C ρ-n n-3/2 , 2006, Electron. J. Comb..

[52]  J. L. Gall,et al.  The topological structure of scaling limits of large planar maps , 2006, math/0607567.

[53]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[54]  J. L. Gall,et al.  Probabilistic and fractal aspects of Lévy trees , 2005, math/0501079.

[55]  B. Durhuus,et al.  Local limit of labeled trees and expected volume growth in a random quadrangulation , 2003, math/0311532.

[56]  T. Duquesne A limit theorem for the contour process of condidtioned Galton--Watson trees , 2003, math/0509522.

[57]  R. Lyons Asymptotic Enumeration of Spanning Trees , 2002, Combinatorics, Probability and Computing.

[58]  O. Schramm,et al.  Uniform Infinite Planar Triangulations , 2002, math/0207153.

[59]  T. F. Móri On random trees , 2002 .

[60]  Gilbert Labelle,et al.  The Specification of 2-trees , 2002, Adv. Appl. Math..

[61]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[62]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[63]  P. Lezaud Chernoff-type bound for finite Markov chains , 1998 .

[64]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[65]  R. Doney,et al.  A bivariate local limit theorem , 1991 .

[66]  S. Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[67]  Gilbert Labelle,et al.  Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange , 1981 .

[68]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[69]  Dominique Foata,et al.  Enumerating k-trees , 1971, Discret. Math..

[70]  Robert W. Robinson,et al.  Enumeration of non-separable graphs* , 1970 .

[71]  J. Moon The number of labeled k-trees , 1969 .

[72]  Lowell W. Beineke,et al.  The number of labeled k-dimensional trees , 1969 .

[73]  Lajos Takács,et al.  A Generalization of the Ballot Problem and its Application in the Theory of Queues , 1962 .

[74]  Frank Harary,et al.  Graph Theory , 2016 .

[75]  Aurélien Garivier,et al.  RANDOM MAPS , 2015 .

[76]  Grégory Miermont,et al.  Scaling limits of random planar maps with large faces , 2011 .

[77]  V. Kraus The degree distribution in unlabelled $2$-connected graph families , 2010 .

[78]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[79]  M. Anthony,et al.  Advanced linear algebra , 2006 .

[80]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[81]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[82]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[83]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[84]  Frank Harary,et al.  Graphical enumeration , 1973 .

[85]  Patrick Billingsley,et al.  Weak convergence of measures - applications in probability , 1971, CBMS-NSF regional conference series in applied mathematics.

[86]  Éric Fusy,et al.  Combinatorics, Probability and Computing on the Diameter of Random Planar Graphs on the Diameter of Random Planar Graphs , 2022 .