An FFT-based fast gradient method for elastic and inelastic unit cell homogenization problems

Abstract Building upon the previously established equivalence of the basic scheme of Moulinec–Suquet’s FFT-based computational homogenization method with a gradient descent method, this work concerns the impact of the fast gradient method of Nesterov in the context of computational homogenization. Nesterov’s method leads to a significant speed up compared to the basic scheme for linear problems with moderate contrast, and compares favorably to the (Newton-)conjugate gradient (CG) method for problems in digital rock physics and (small strain) elastoplasticity. We present an efficient implementation requiring twice the storage of the basic scheme, but only half of the storage of the CG method.

[1]  Juan Peypouquet,et al.  A Dynamical Approach to an Inertial Forward-Backward Algorithm for Convex Minimization , 2014, SIAM J. Optim..

[2]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[3]  Tapan Mukerji,et al.  Digital rock physics benchmarks - part II: Computing effective properties , 2013, Comput. Geosci..

[4]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[5]  Jan Novák,et al.  Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients , 2010, J. Comput. Phys..

[6]  Graeme W. Milton,et al.  A fast numerical scheme for computing the response of composites using grid refinement , 1999 .

[7]  Hervé Moulinec,et al.  Comparison of three accelerated FFT‐based schemes for computing the mechanical response of composite materials , 2014 .

[8]  R. Winther Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .

[9]  Hervé Moulinec,et al.  A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .

[10]  A. Chambolle,et al.  On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm” , 2015, J. Optim. Theory Appl..

[11]  M. Schneider,et al.  Computational homogenization of elasticity on a staggered grid , 2016 .

[12]  Luc Dormieux,et al.  FFT-based methods for the mechanics of composites: A general variational framework , 2010 .

[13]  R. Palais Morse theory on Hilbert manifolds , 1963 .

[14]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[15]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[16]  Jaroslav Vondrejc,et al.  A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media , 2015, J. Comput. Phys..

[17]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[18]  L. Dormieux,et al.  Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites , 2012 .

[19]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[20]  Donald Goldfarb,et al.  2 A Variable-Splitting Augmented Lagrangian Framework , 2011 .

[21]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[22]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[23]  H. Attouch,et al.  THE HEAVY BALL WITH FRICTION METHOD, I. THE CONTINUOUS DYNAMICAL SYSTEM: GLOBAL EXPLORATION OF THE LOCAL MINIMA OF A REAL-VALUED FUNCTION BY ASYMPTOTIC ANALYSIS OF A DISSIPATIVE DYNAMICAL SYSTEM , 2000 .

[24]  Stephen P. Boyd,et al.  A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..

[25]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[26]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[27]  M. Schneider,et al.  Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations , 2014 .

[28]  Felipe Alvarez,et al.  On the Minimizing Property of a Second Order Dissipative System in Hilbert Spaces , 2000, SIAM J. Control. Optim..

[29]  Guy Bonnet,et al.  Effective properties of elastic periodic composite media with fibers , 2007 .

[30]  M. Schneider The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics , 2017 .

[31]  Jaroslav Vondřejc,et al.  Improved guaranteed computable bounds on homogenized properties of periodic media by the Fourier–Galerkin method with exact integration , 2014 .

[32]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[33]  H. Moulinec,et al.  A fast numerical method for computing the linear and nonlinear mechanical properties of composites , 1994 .

[34]  M. Schneider,et al.  FFT‐based homogenization for microstructures discretized by linear hexahedral elements , 2017 .

[35]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[36]  G. Bonnet,et al.  A polarization‐based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast , 2012 .

[37]  L. Gélébart,et al.  Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials , 2013 .

[38]  Peter Gumbsch,et al.  3D microstructure modeling of long fiber reinforced thermoplastics , 2014 .

[39]  F. Willot,et al.  Fourier-based schemes for computing the mechanical response of composites with accurate local fields , 2014, 1412.8398.